Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
""" | |
This file registers pre-defined datasets at hard-coded paths, and their metadata. | |
We hard-code metadata for common datasets. This will enable: | |
1. Consistency check when loading the datasets | |
2. Use models on these standard datasets directly and run demos, | |
without having to download the dataset annotations | |
We hard-code some paths to the dataset that's assumed to | |
exist in "./datasets/". | |
Users SHOULD NOT use this file to create new dataset / metadata for new dataset. | |
To add new dataset, refer to the tutorial "docs/DATASETS.md". | |
""" | |
import os | |
from detectron2.data import DatasetCatalog, MetadataCatalog | |
from .builtin_meta import ADE20K_SEM_SEG_CATEGORIES, _get_builtin_metadata | |
from .cityscapes import load_cityscapes_instances, load_cityscapes_semantic | |
from .cityscapes_panoptic import register_all_cityscapes_panoptic | |
from .coco import load_sem_seg, register_coco_instances | |
from .coco_panoptic import register_coco_panoptic, register_coco_panoptic_separated | |
from .lvis import get_lvis_instances_meta, register_lvis_instances | |
from .pascal_voc import register_pascal_voc | |
# ==== Predefined datasets and splits for COCO ========== | |
_PREDEFINED_SPLITS_COCO = {} | |
_PREDEFINED_SPLITS_COCO["coco"] = { | |
"coco_2014_train": ("coco/train2014", "coco/annotations/instances_train2014.json"), | |
"coco_2014_val": ("coco/val2014", "coco/annotations/instances_val2014.json"), | |
"coco_2014_minival": ("coco/val2014", "coco/annotations/instances_minival2014.json"), | |
"coco_2014_minival_100": ("coco/val2014", "coco/annotations/instances_minival2014_100.json"), | |
"coco_2014_valminusminival": ( | |
"coco/val2014", | |
"coco/annotations/instances_valminusminival2014.json", | |
), | |
"coco_2017_train": ("coco/train2017", "coco/annotations/instances_train2017.json"), | |
"coco_2017_val": ("coco/val2017", "coco/annotations/instances_val2017.json"), | |
"coco_2017_test": ("coco/test2017", "coco/annotations/image_info_test2017.json"), | |
"coco_2017_test-dev": ("coco/test2017", "coco/annotations/image_info_test-dev2017.json"), | |
"coco_2017_val_100": ("coco/val2017", "coco/annotations/instances_val2017_100.json"), | |
} | |
_PREDEFINED_SPLITS_COCO["coco_ovd"] = { | |
"coco_2017_ovd_all_train": ("coco/train2017", "coco/annotations/ovd_ins_train2017_all.json"), | |
"coco_2017_ovd_b_train": ("coco/train2017", "coco/annotations/ovd_ins_train2017_b.json"), | |
"coco_2017_ovd_t_train": ("coco/train2017", "coco/annotations/ovd_ins_train2017_t.json"), | |
"coco_2017_ovd_all_test": ("coco/val2017", "coco/annotations/ovd_ins_val2017_all.json"), | |
"coco_2017_ovd_b_test": ("coco/val2017", "coco/annotations/ovd_ins_val2017_b.json"), | |
"coco_2017_ovd_t_test": ("coco/val2017", "coco/annotations/ovd_ins_val2017_t.json"), | |
} | |
# zeroshot inference of grounding evaluation | |
_PREDEFINED_SPLITS_FLICKR30K = {} | |
_PREDEFINED_SPLITS_FLICKR30K["yfcc100m"] = { | |
"flickr30k_train": ('flickr30k_images', "flickr30k_anno", "split/train.txt"), | |
"flickr30k_val": ('flickr30k_images', "flickr30k_anno", "split/val.txt"), | |
"flickr30k_test": ('flickr30k_images', "flickr30k_anno", "split/test.txt"), | |
} | |
_PREDEFINED_SPLITS_COCO["coco_person"] = { | |
"keypoints_coco_2014_train": ( | |
"coco/train2014", | |
"coco/annotations/person_keypoints_train2014.json", | |
), | |
"keypoints_coco_2014_val": ("coco/val2014", "coco/annotations/person_keypoints_val2014.json"), | |
"keypoints_coco_2014_minival": ( | |
"coco/val2014", | |
"coco/annotations/person_keypoints_minival2014.json", | |
), | |
"keypoints_coco_2014_valminusminival": ( | |
"coco/val2014", | |
"coco/annotations/person_keypoints_valminusminival2014.json", | |
), | |
"keypoints_coco_2014_minival_100": ( | |
"coco/val2014", | |
"coco/annotations/person_keypoints_minival2014_100.json", | |
), | |
"keypoints_coco_2017_train": ( | |
"coco/train2017", | |
"coco/annotations/person_keypoints_train2017.json", | |
), | |
"keypoints_coco_2017_val": ("coco/val2017", "coco/annotations/person_keypoints_val2017.json"), | |
"keypoints_coco_2017_val_100": ( | |
"coco/val2017", | |
"coco/annotations/person_keypoints_val2017_100.json", | |
), | |
} | |
_PREDEFINED_SPLITS_COCO_PANOPTIC = { | |
"coco_2017_train_panoptic": ( | |
# This is the original panoptic annotation directory | |
"coco/panoptic_train2017", | |
"coco/annotations/panoptic_train2017.json", | |
# This directory contains semantic annotations that are | |
# converted from panoptic annotations. | |
# It is used by PanopticFPN. | |
# You can use the script at detectron2/datasets/prepare_panoptic_fpn.py | |
# to create these directories. | |
"coco/panoptic_stuff_train2017", | |
), | |
"coco_2017_val_panoptic": ( | |
"coco/panoptic_val2017", | |
"coco/annotations/panoptic_val2017.json", | |
"coco/panoptic_stuff_val2017", | |
), | |
"coco_2017_val_100_panoptic": ( | |
"coco/panoptic_val2017_100", | |
"coco/annotations/panoptic_val2017_100.json", | |
"coco/panoptic_stuff_val2017_100", | |
), | |
} | |
def register_all_coco(root): | |
for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_COCO.items(): | |
if dataset_name == 'coco_ovd': # for zero-shot split | |
for key, (image_root, json_file) in splits_per_dataset.items(): | |
# Assume pre-defined datasets live in `./datasets`. | |
register_coco_instances( | |
key, | |
{}, # empty metadata, it will be overwritten in load_coco_json() function | |
os.path.join(root, json_file) if "://" not in json_file else json_file, | |
os.path.join(root, image_root), | |
) | |
else: # default splits | |
for key, (image_root, json_file) in splits_per_dataset.items(): | |
# Assume pre-defined datasets live in `./datasets`. | |
register_coco_instances( | |
key, | |
_get_builtin_metadata(dataset_name), | |
os.path.join(root, json_file) if "://" not in json_file else json_file, | |
os.path.join(root, image_root), | |
) | |
for ( | |
prefix, | |
(panoptic_root, panoptic_json, semantic_root), | |
) in _PREDEFINED_SPLITS_COCO_PANOPTIC.items(): | |
prefix_instances = prefix[: -len("_panoptic")] | |
instances_meta = MetadataCatalog.get(prefix_instances) | |
image_root, instances_json = instances_meta.image_root, instances_meta.json_file | |
# The "separated" version of COCO panoptic segmentation dataset, | |
# e.g. used by Panoptic FPN | |
register_coco_panoptic_separated( | |
prefix, | |
_get_builtin_metadata("coco_panoptic_separated"), | |
image_root, | |
os.path.join(root, panoptic_root), | |
os.path.join(root, panoptic_json), | |
os.path.join(root, semantic_root), | |
instances_json, | |
) | |
# The "standard" version of COCO panoptic segmentation dataset, | |
# e.g. used by Panoptic-DeepLab | |
register_coco_panoptic( | |
prefix, | |
_get_builtin_metadata("coco_panoptic_standard"), | |
image_root, | |
os.path.join(root, panoptic_root), | |
os.path.join(root, panoptic_json), | |
instances_json, | |
) | |
# ==== Predefined datasets and splits for LVIS ========== | |
def register_all_flickr30k(): | |
MetadataCatalog.get('yfcc100m').set(evaluator_type="flickr30k") | |
# ==== Predefined datasets and splits for LVIS ========== | |
_PREDEFINED_SPLITS_LVIS = { | |
"lvis_v1": { | |
"lvis_v1_train": ("coco/", "lvis/lvis_v1_train.json"), | |
"lvis_v1_val": ("coco/", "lvis/lvis_v1_val.json"), | |
"lvis_v1_test_dev": ("coco/", "lvis/lvis_v1_image_info_test_dev.json"), | |
"lvis_v1_test_challenge": ("coco/", "lvis/lvis_v1_image_info_test_challenge.json"), | |
}, | |
"lvis_v1_zeroshot": { | |
"lvis_v1_train_zeroshot": ("coco/", "lvis/lvis_v1_train.json"), | |
"lvis_v1_val_zeroshot": ("coco/", "lvis/lvis_v1_val.json"), | |
"lvis_v1_test_dev_zeroshot": ("coco/", "lvis/lvis_v1_image_info_test_dev.json"), | |
"lvis_v1_test_challenge_zeroshot": ("coco/", "lvis/lvis_v1_image_info_test_challenge.json"), | |
}, | |
"lvis_v0.5": { | |
"lvis_v0.5_train": ("coco/", "lvis/lvis_v0.5_train.json"), | |
"lvis_v0.5_val": ("coco/", "lvis/lvis_v0.5_val.json"), | |
"lvis_v0.5_val_rand_100": ("coco/", "lvis/lvis_v0.5_val_rand_100.json"), | |
"lvis_v0.5_test": ("coco/", "lvis/lvis_v0.5_image_info_test.json"), | |
}, | |
"lvis_v0.5_cocofied": { | |
"lvis_v0.5_train_cocofied": ("coco/", "lvis/lvis_v0.5_train_cocofied.json"), | |
"lvis_v0.5_val_cocofied": ("coco/", "lvis/lvis_v0.5_val_cocofied.json"), | |
}, | |
} | |
def register_all_lvis(root): | |
for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_LVIS.items(): | |
for key, (image_root, json_file) in splits_per_dataset.items(): | |
register_lvis_instances( | |
key, | |
get_lvis_instances_meta(dataset_name), | |
os.path.join(root, json_file) if "://" not in json_file else json_file, | |
os.path.join(root, image_root), | |
) | |
# ==== Predefined splits for raw cityscapes images =========== | |
_RAW_CITYSCAPES_SPLITS = { | |
"cityscapes_fine_{task}_train": ("cityscapes/leftImg8bit/train/", "cityscapes/gtFine/train/"), | |
"cityscapes_fine_{task}_val": ("cityscapes/leftImg8bit/val/", "cityscapes/gtFine/val/"), | |
"cityscapes_fine_{task}_test": ("cityscapes/leftImg8bit/test/", "cityscapes/gtFine/test/"), | |
} | |
def register_all_cityscapes(root): | |
for key, (image_dir, gt_dir) in _RAW_CITYSCAPES_SPLITS.items(): | |
meta = _get_builtin_metadata("cityscapes") | |
image_dir = os.path.join(root, image_dir) | |
gt_dir = os.path.join(root, gt_dir) | |
inst_key = key.format(task="instance_seg") | |
DatasetCatalog.register( | |
inst_key, | |
lambda x=image_dir, y=gt_dir: load_cityscapes_instances( | |
x, y, from_json=True, to_polygons=True | |
), | |
) | |
MetadataCatalog.get(inst_key).set( | |
image_dir=image_dir, gt_dir=gt_dir, evaluator_type="cityscapes_instance", **meta | |
) | |
sem_key = key.format(task="sem_seg") | |
DatasetCatalog.register( | |
sem_key, lambda x=image_dir, y=gt_dir: load_cityscapes_semantic(x, y) | |
) | |
MetadataCatalog.get(sem_key).set( | |
image_dir=image_dir, | |
gt_dir=gt_dir, | |
evaluator_type="cityscapes_sem_seg", | |
ignore_label=255, | |
**meta, | |
) | |
# ==== Predefined splits for PASCAL VOC =========== | |
def register_all_pascal_voc(root): | |
SPLITS = [ | |
("voc_2007_trainval", "VOC2007", "trainval"), | |
("voc_2007_train", "VOC2007", "train"), | |
("voc_2007_val", "VOC2007", "val"), | |
("voc_2007_test", "VOC2007", "test"), | |
("voc_2012_trainval", "VOC2012", "trainval"), | |
("voc_2012_train", "VOC2012", "train"), | |
("voc_2012_val", "VOC2012", "val"), | |
] | |
for name, dirname, split in SPLITS: | |
year = 2007 if "2007" in name else 2012 | |
register_pascal_voc(name, os.path.join(root, dirname), split, year) | |
MetadataCatalog.get(name).evaluator_type = "pascal_voc" | |
def register_all_ade20k(root): | |
root = os.path.join(root, "ADEChallengeData2016") | |
for name, dirname in [("train", "training"), ("val", "validation")]: | |
image_dir = os.path.join(root, "images", dirname) | |
gt_dir = os.path.join(root, "annotations_detectron2", dirname) | |
name = f"ade20k_sem_seg_{name}" | |
DatasetCatalog.register( | |
name, lambda x=image_dir, y=gt_dir: load_sem_seg(y, x, gt_ext="png", image_ext="jpg") | |
) | |
MetadataCatalog.get(name).set( | |
stuff_classes=ADE20K_SEM_SEG_CATEGORIES[:], | |
image_root=image_dir, | |
sem_seg_root=gt_dir, | |
evaluator_type="sem_seg", | |
ignore_label=255, | |
) | |
# True for open source; | |
# Internally at fb, we register them elsewhere | |
if __name__.endswith(".builtin"): | |
# Assume pre-defined datasets live in `./datasets`. | |
_root = os.getenv("DETECTRON2_DATASETS", "datasets") | |
register_all_coco(_root) | |
register_all_lvis(_root) | |
register_all_cityscapes(_root) | |
register_all_cityscapes_panoptic(_root) | |
register_all_pascal_voc(_root) | |
register_all_ade20k(_root) | |
register_all_flickr30k() | |