jwyang
first commit
4121bec
raw history blame
No virus
49.8 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
from typing import Dict, List, Tuple, Union
import torch
from fvcore.nn import giou_loss, smooth_l1_loss
from torch import nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.layers import ShapeSpec, batched_nms, cat, cross_entropy, nonzero_tuple
from detectron2.layers.soft_nms import batched_soft_nms
from detectron2.modeling.box_regression import Box2BoxTransform
from detectron2.structures import Boxes, Instances
from detectron2.utils.events import get_event_storage
__all__ = ["fast_rcnn_inference", "FastRCNNOutputLayers", "CLIPFastRCNNOutputLayers"]
logger = logging.getLogger(__name__)
"""
Shape shorthand in this module:
N: number of images in the minibatch
R: number of ROIs, combined over all images, in the minibatch
Ri: number of ROIs in image i
K: number of foreground classes. E.g.,there are 80 foreground classes in COCO.
Naming convention:
deltas: refers to the 4-d (dx, dy, dw, dh) deltas that parameterize the box2box
transform (see :class:`box_regression.Box2BoxTransform`).
pred_class_logits: predicted class scores in [-inf, +inf]; use
softmax(pred_class_logits) to estimate P(class).
gt_classes: ground-truth classification labels in [0, K], where [0, K) represent
foreground object classes and K represents the background class.
pred_proposal_deltas: predicted box2box transform deltas for transforming proposals
to detection box predictions.
gt_proposal_deltas: ground-truth box2box transform deltas
"""
def fast_rcnn_inference(
boxes: List[torch.Tensor],
scores: List[torch.Tensor],
image_shapes: List[Tuple[int, int]],
score_thresh: float,
nms_thresh: float,
soft_nms_enabled,
soft_nms_method,
soft_nms_sigma,
soft_nms_prune,
topk_per_image: int,
scores_bf_multiply,
):
"""
Call `fast_rcnn_inference_single_image` for all images.
Args:
boxes (list[Tensor]): A list of Tensors of predicted class-specific or class-agnostic
boxes for each image. Element i has shape (Ri, K * 4) if doing
class-specific regression, or (Ri, 4) if doing class-agnostic
regression, where Ri is the number of predicted objects for image i.
This is compatible with the output of :meth:`FastRCNNOutputLayers.predict_boxes`.
scores (list[Tensor]): A list of Tensors of predicted class scores for each image.
Element i has shape (Ri, K + 1), where Ri is the number of predicted objects
for image i. Compatible with the output of :meth:`FastRCNNOutputLayers.predict_probs`.
image_shapes (list[tuple]): A list of (width, height) tuples for each image in the batch.
score_thresh (float): Only return detections with a confidence score exceeding this
threshold.
nms_thresh (float): The threshold to use for box non-maximum suppression. Value in [0, 1].
soft_nms_enabled (bool): Indicate to use soft non-maximum suppression.
soft_nms_method: (str): One of ['gaussian', 'linear', 'hard']
soft_nms_sigma: (float): Sigma for gaussian soft nms. Value in (0, inf)
soft_nms_prune: (float): Threshold for pruning during soft nms. Value in [0, 1]
topk_per_image (int): The number of top scoring detections to return. Set < 0 to return
all detections.
Returns:
instances: (list[Instances]): A list of N instances, one for each image in the batch,
that stores the topk most confidence detections.
kept_indices: (list[Tensor]): A list of 1D tensor of length of N, each element indicates
the corresponding boxes/scores index in [0, Ri) from the input, for image i.
"""
result_per_image = [
fast_rcnn_inference_single_image(
boxes_per_image, scores_per_image, image_shape, score_thresh, nms_thresh,
soft_nms_enabled, soft_nms_method, soft_nms_sigma, soft_nms_prune, topk_per_image, s_bf_per_img
)
for scores_per_image, boxes_per_image, image_shape, s_bf_per_img in zip(scores, boxes, image_shapes, scores_bf_multiply)
]
return [x[0] for x in result_per_image], [x[1] for x in result_per_image]
def _log_classification_stats(pred_logits, gt_classes, prefix="fast_rcnn"):
"""
Log the classification metrics to EventStorage.
Args:
pred_logits: Rx(K+1) logits. The last column is for background class.
gt_classes: R labels
"""
num_instances = gt_classes.numel()
if num_instances == 0:
return
pred_classes = pred_logits.argmax(dim=1)
bg_class_ind = pred_logits.shape[1] - 1
fg_inds = (gt_classes >= 0) & (gt_classes < bg_class_ind)
num_fg = fg_inds.nonzero().numel()
fg_gt_classes = gt_classes[fg_inds]
fg_pred_classes = pred_classes[fg_inds]
num_false_negative = (fg_pred_classes == bg_class_ind).nonzero().numel()
num_accurate = (pred_classes == gt_classes).nonzero().numel()
fg_num_accurate = (fg_pred_classes == fg_gt_classes).nonzero().numel()
storage = get_event_storage()
storage.put_scalar(f"{prefix}/cls_accuracy", num_accurate / num_instances)
if num_fg > 0:
storage.put_scalar(f"{prefix}/fg_cls_accuracy", fg_num_accurate / num_fg)
storage.put_scalar(f"{prefix}/false_negative", num_false_negative / num_fg)
#print("cls_accuracy {:.2f}; fg_cls_accuracy {:.2f}; false_negative {:.2f}".format(num_accurate / num_instances, fg_num_accurate / num_fg, num_false_negative / num_fg))
def fast_rcnn_inference_single_image(
boxes,
scores,
image_shape: Tuple[int, int],
score_thresh: float,
nms_thresh: float,
soft_nms_enabled,
soft_nms_method,
soft_nms_sigma,
soft_nms_prune,
topk_per_image: int,
scores_bf_multiply: None,
):
"""
Single-image inference. Return bounding-box detection results by thresholding
on scores and applying non-maximum suppression (NMS).
Args:
Same as `fast_rcnn_inference`, but with boxes, scores, and image shapes
per image.
Returns:
Same as `fast_rcnn_inference`, but for only one image.
"""
valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1)
if not valid_mask.all():
boxes = boxes[valid_mask]
scores = scores[valid_mask]
scores_bf_multiply = scores_bf_multiply[valid_mask]
# scores = scores[:, :-1]
# scores_bf_multiply = scores_bf_multiply[:, :-1]
num_bbox_reg_classes = boxes.shape[1] // 4
# Convert to Boxes to use the `clip` function ...
boxes = Boxes(boxes.reshape(-1, 4))
boxes.clip(image_shape)
boxes = boxes.tensor.view(-1, num_bbox_reg_classes, 4) # R x C x 4
# 1. Filter results based on detection scores. It can make NMS more efficient
# by filtering out low-confidence detections.
filter_mask = scores > score_thresh # R x K
# R' x 2. First column contains indices of the R predictions;
# Second column contains indices of classes.
filter_inds = filter_mask.nonzero()
if num_bbox_reg_classes == 1:
boxes = boxes[filter_inds[:, 0], 0]
else:
boxes = boxes[filter_mask]
scores = scores[filter_mask]
scores_bf_multiply = scores_bf_multiply[filter_mask]
# 2. Apply NMS for each class independently.
if not soft_nms_enabled:
keep = batched_nms(boxes, scores, filter_inds[:, 1], nms_thresh)
else:
keep, soft_nms_scores = batched_soft_nms(
boxes,
scores,
filter_inds[:, 1],
soft_nms_method,
soft_nms_sigma,
nms_thresh,
soft_nms_prune,
)
scores[keep] = soft_nms_scores
# scores_bf_multiply? (TBD)
scores_bf_multiply = scores
if topk_per_image >= 0:
keep = keep[:topk_per_image]
boxes, scores, filter_inds = boxes[keep], scores[keep], filter_inds[keep]
scores_bf_multiply = scores_bf_multiply[keep]
result = Instances(image_shape)
result.pred_boxes = Boxes(boxes)
result.scores = scores
result.scores = scores_bf_multiply # convert to the original scores before multiplying RPN scores
result.pred_classes = filter_inds[:, 1]
return result, filter_inds[:, 0]
class FastRCNNOutputs:
"""
An internal implementation that stores information about outputs of a Fast R-CNN head,
and provides methods that are used to decode the outputs of a Fast R-CNN head.
"""
def __init__(
self,
box2box_transform,
pred_class_logits,
pred_proposal_deltas,
proposals,
smooth_l1_beta=0.0,
box_reg_loss_type="smooth_l1",
):
"""
Args:
box2box_transform (Box2BoxTransform/Box2BoxTransformRotated):
box2box transform instance for proposal-to-detection transformations.
pred_class_logits (Tensor): A tensor of shape (R, K + 1) storing the predicted class
logits for all R predicted object instances.
Each row corresponds to a predicted object instance.
pred_proposal_deltas (Tensor): A tensor of shape (R, K * B) or (R, B) for
class-specific or class-agnostic regression. It stores the predicted deltas that
transform proposals into final box detections.
B is the box dimension (4 or 5).
When B is 4, each row is [dx, dy, dw, dh (, ....)].
When B is 5, each row is [dx, dy, dw, dh, da (, ....)].
proposals (list[Instances]): A list of N Instances, where Instances i stores the
proposals for image i, in the field "proposal_boxes".
When training, each Instances must have ground-truth labels
stored in the field "gt_classes" and "gt_boxes".
The total number of all instances must be equal to R.
smooth_l1_beta (float): The transition point between L1 and L2 loss in
the smooth L1 loss function. When set to 0, the loss becomes L1. When
set to +inf, the loss becomes constant 0.
box_reg_loss_type (str): Box regression loss type. One of: "smooth_l1", "giou"
"""
self.box2box_transform = box2box_transform
self.num_preds_per_image = [len(p) for p in proposals]
self.pred_class_logits = pred_class_logits
self.pred_proposal_deltas = pred_proposal_deltas
self.smooth_l1_beta = smooth_l1_beta
self.box_reg_loss_type = box_reg_loss_type
self.image_shapes = [x.image_size for x in proposals]
if len(proposals):
box_type = type(proposals[0].proposal_boxes)
# cat(..., dim=0) concatenates over all images in the batch
self.proposals = box_type.cat([p.proposal_boxes for p in proposals])
assert (
not self.proposals.tensor.requires_grad
), "Proposals should not require gradients!"
# "gt_classes" exists if and only if training. But other gt fields may
# not necessarily exist in training for images that have no groundtruth.
if proposals[0].has("gt_classes"):
self.gt_classes = cat([p.gt_classes for p in proposals], dim=0)
# If "gt_boxes" does not exist, the proposals must be all negative and
# should not be included in regression loss computation.
# Here we just use proposal_boxes as an arbitrary placeholder because its
# value won't be used in self.box_reg_loss().
gt_boxes = [
p.gt_boxes if p.has("gt_boxes") else p.proposal_boxes for p in proposals
]
self.gt_boxes = box_type.cat(gt_boxes)
else:
self.proposals = Boxes(torch.zeros(0, 4, device=self.pred_proposal_deltas.device))
self._no_instances = len(self.proposals) == 0 # no instances found
def softmax_cross_entropy_loss(self):
"""
Deprecated
"""
_log_classification_stats(self.pred_class_logits, self.gt_classes)
return cross_entropy(self.pred_class_logits, self.gt_classes, reduction="mean")
def box_reg_loss(self):
"""
Deprecated
"""
if self._no_instances:
return 0.0 * self.pred_proposal_deltas.sum()
box_dim = self.proposals.tensor.size(1) # 4 or 5
cls_agnostic_bbox_reg = self.pred_proposal_deltas.size(1) == box_dim
device = self.pred_proposal_deltas.device
bg_class_ind = self.pred_class_logits.shape[1] - 1
# Box delta loss is only computed between the prediction for the gt class k
# (if 0 <= k < bg_class_ind) and the target; there is no loss defined on predictions
# for non-gt classes and background.
# Empty fg_inds should produce a valid loss of zero because reduction=sum.
fg_inds = nonzero_tuple((self.gt_classes >= 0) & (self.gt_classes < bg_class_ind))[0]
if cls_agnostic_bbox_reg:
# pred_proposal_deltas only corresponds to foreground class for agnostic
gt_class_cols = torch.arange(box_dim, device=device)
else:
# pred_proposal_deltas for class k are located in columns [b * k : b * k + b],
# where b is the dimension of box representation (4 or 5)
# Note that compared to Detectron1,
# we do not perform bounding box regression for background classes.
gt_class_cols = box_dim * self.gt_classes[fg_inds, None] + torch.arange(
box_dim, device=device
)
if self.box_reg_loss_type == "smooth_l1":
gt_proposal_deltas = self.box2box_transform.get_deltas(
self.proposals.tensor, self.gt_boxes.tensor
)
loss_box_reg = smooth_l1_loss(
self.pred_proposal_deltas[fg_inds[:, None], gt_class_cols],
gt_proposal_deltas[fg_inds],
self.smooth_l1_beta,
reduction="sum",
)
elif self.box_reg_loss_type == "giou":
fg_pred_boxes = self.box2box_transform.apply_deltas(
self.pred_proposal_deltas[fg_inds[:, None], gt_class_cols],
self.proposals.tensor[fg_inds],
)
loss_box_reg = giou_loss(
fg_pred_boxes,
self.gt_boxes.tensor[fg_inds],
reduction="sum",
)
else:
raise ValueError(f"Invalid bbox reg loss type '{self.box_reg_loss_type}'")
loss_box_reg = loss_box_reg / self.gt_classes.numel()
return loss_box_reg
def losses(self):
"""
Deprecated
"""
return {"loss_cls": self.softmax_cross_entropy_loss(), "loss_box_reg": self.box_reg_loss()}
def predict_boxes(self):
"""
Deprecated
"""
pred = self.box2box_transform.apply_deltas(self.pred_proposal_deltas, self.proposals.tensor)
return pred.split(self.num_preds_per_image, dim=0)
def predict_probs(self):
"""
Deprecated
"""
probs = F.softmax(self.pred_class_logits, dim=-1)
return probs.split(self.num_preds_per_image, dim=0)
class FastRCNNOutputLayers(nn.Module):
"""
Two linear layers for predicting Fast R-CNN outputs:
1. proposal-to-detection box regression deltas
2. classification scores
"""
@configurable
def __init__(
self,
input_shape: ShapeSpec,
*,
box2box_transform,
num_classes: int,
test_score_thresh: float = 0.0,
test_nms_thresh: float = 0.5,
soft_nms_enabled=False,
soft_nms_method="gaussian",
soft_nms_sigma=0.5,
soft_nms_prune=0.001,
test_topk_per_image: int = 100,
cls_agnostic_bbox_reg: bool = False,
smooth_l1_beta: float = 0.0,
box_reg_loss_type: str = "smooth_l1",
loss_weight: Union[float, Dict[str, float]] = 1.0,
clip_cls_emb: tuple = (False, None),
no_box_delta: bool = False,
bg_cls_loss_weight: None,
multiply_rpn_score: False,
openset_test: None,
):
"""
NOTE: this interface is experimental.
Args:
input_shape (ShapeSpec): shape of the input feature to this module
box2box_transform (Box2BoxTransform or Box2BoxTransformRotated):
num_classes (int): number of foreground classes
test_score_thresh (float): threshold to filter predictions results.
test_nms_thresh (float): NMS threshold for prediction results.
test_topk_per_image (int): number of top predictions to produce per image.
cls_agnostic_bbox_reg (bool): whether to use class agnostic for bbox regression
smooth_l1_beta (float): transition point from L1 to L2 loss. Only used if
`box_reg_loss_type` is "smooth_l1"
box_reg_loss_type (str): Box regression loss type. One of: "smooth_l1", "giou"
loss_weight (float|dict): weights to use for losses. Can be single float for weighting
all losses, or a dict of individual weightings. Valid dict keys are:
* "loss_cls": applied to classification loss
* "loss_box_reg": applied to box regression loss
"""
super().__init__()
if isinstance(input_shape, int): # some backward compatibility
input_shape = ShapeSpec(channels=input_shape)
self.num_classes = num_classes
input_size = input_shape.channels * (input_shape.width or 1) * (input_shape.height or 1)
if clip_cls_emb[0]: # if combine {C4, text emb as classifier}, then has to use att_pool to match dimension
input_size = clip_cls_emb[3] if clip_cls_emb[2] in ['CLIPRes5ROIHeads', 'CLIPStandardROIHeads'] else input_size
# prediction layer for num_classes foreground classes and one background class (hence + 1)
self.cls_score = nn.Linear(input_size, num_classes + 1)
num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
box_dim = len(box2box_transform.weights)
self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)
nn.init.normal_(self.cls_score.weight, std=0.01)
nn.init.normal_(self.bbox_pred.weight, std=0.001)
for l in [self.cls_score, self.bbox_pred]:
nn.init.constant_(l.bias, 0)
self.box2box_transform = box2box_transform
self.smooth_l1_beta = smooth_l1_beta
self.test_score_thresh = test_score_thresh
self.test_nms_thresh = test_nms_thresh
self.soft_nms_enabled = soft_nms_enabled
self.soft_nms_method = soft_nms_method
self.soft_nms_sigma = soft_nms_sigma
self.soft_nms_prune = soft_nms_prune
self.test_topk_per_image = test_topk_per_image
self.box_reg_loss_type = box_reg_loss_type
if isinstance(loss_weight, float):
loss_weight = {"loss_cls": loss_weight, "loss_box_reg": loss_weight}
self.loss_weight = loss_weight
# use clip text embeddings as classifier's weights
self.use_clip_cls_emb = clip_cls_emb[0]
if self.use_clip_cls_emb:
######### V2L projection layer in CVPR OVR model #########
if openset_test[3]: # run CVPR model
self.emb_pred = nn.Linear(input_size, 768)
self.emb_pred.weight.requires_grad = False
self.emb_pred.bias.requires_grad = False
input_size = 768
else:
self.emb_pred = None
######### V2L projection layer in CVPR OVR model #########
text_emb_require_grad = False
self.use_bias = False
self.tempurature = openset_test[2] # 0.01 # the smaller, the bigger difference among probs after softmax
self.no_box_delta = no_box_delta
if bg_cls_loss_weight is not None: # loss weigh for bg regions
self.cls_loss_weight = torch.ones(num_classes + 1)
self.cls_loss_weight[-1] = bg_cls_loss_weight
else:
self.cls_loss_weight = None
self.multiply_rpn_score = multiply_rpn_score
self.focal_scaled_loss = openset_test[4]
@classmethod
def from_config(cls, cfg, input_shape):
# if cfg.MODEL.CLIP.CROP_REGION_TYPE == "RPN":
# assert cfg.MODEL.CLIP.NO_BOX_DELTA is False
return {
"input_shape": input_shape,
"box2box_transform": Box2BoxTransform(weights=cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS),
# fmt: off
"num_classes" : cfg.MODEL.ROI_HEADS.NUM_CLASSES,
"cls_agnostic_bbox_reg" : cfg.MODEL.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG,
"smooth_l1_beta" : cfg.MODEL.ROI_BOX_HEAD.SMOOTH_L1_BETA,
"test_score_thresh" : cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST,
"test_nms_thresh" : cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST,
"soft_nms_enabled" : cfg.MODEL.ROI_HEADS.SOFT_NMS_ENABLED,
"soft_nms_method" : cfg.MODEL.ROI_HEADS.SOFT_NMS_METHOD,
"soft_nms_sigma" : cfg.MODEL.ROI_HEADS.SOFT_NMS_SIGMA,
"soft_nms_prune" : cfg.MODEL.ROI_HEADS.SOFT_NMS_PRUNE,
"test_topk_per_image" : cfg.TEST.DETECTIONS_PER_IMAGE,
"box_reg_loss_type" : cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_TYPE,
"loss_weight" : {"loss_box_reg": cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_WEIGHT},
"clip_cls_emb" : (cfg.MODEL.CLIP.USE_TEXT_EMB_CLASSIFIER, cfg.MODEL.CLIP.TEXT_EMB_PATH, cfg.MODEL.ROI_HEADS.NAME, cfg.MODEL.CLIP.TEXT_EMB_DIM),
"no_box_delta" : cfg.MODEL.CLIP.NO_BOX_DELTA or cfg.MODEL.CLIP.CROP_REGION_TYPE == 'GT',
"bg_cls_loss_weight" : cfg.MODEL.CLIP.BG_CLS_LOSS_WEIGHT,
"multiply_rpn_score" : cfg.MODEL.CLIP.MULTIPLY_RPN_SCORE,
"openset_test" : (cfg.MODEL.CLIP.OPENSET_TEST_NUM_CLASSES, cfg.MODEL.CLIP.OPENSET_TEST_TEXT_EMB_PATH, \
cfg.MODEL.CLIP.CLSS_TEMP, cfg.MODEL.CLIP.RUN_CVPR_OVR, cfg.MODEL.CLIP.FOCAL_SCALED_LOSS)
# fmt: on
}
def forward(self, x, queries):
"""
Args:
x: per-region features of shape (N, ...) for N bounding boxes to predict.
Returns:
(Tensor, Tensor):
First tensor: shape (N,K+1), scores for each of the N box. Each row contains the
scores for K object categories and 1 background class.
Second tensor: bounding box regression deltas for each box. Shape is shape (N,Kx4),
or (N,4) for class-agnostic regression.
"""
if x.dim() > 2:
x = torch.flatten(x, start_dim=1)
if self.use_clip_cls_emb: # use clip text embeddings as classifier's weights
normalized_x = F.normalize(x, p=2.0, dim=1)
cls_scores = normalized_x @ queries.t()
bg_cls_scores = cls_scores.new(cls_scores.shape[0], 1).fill_(0.3)
scores = cls_scores # torch.cat((cls_scores, bg_cls_scores), 1)
else: # default setting
scores = self.cls_score(x)
proposal_deltas = scores.new(scores.shape[0], 4).fill_(0) # self.bbox_pred(x)
return scores, proposal_deltas
def losses(self, predictions, proposals):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were used
to compute predictions. The fields ``proposal_boxes``, ``gt_boxes``,
``gt_classes`` are expected.
Returns:
Dict[str, Tensor]: dict of losses
"""
scores, proposal_deltas = predictions
# parse classification outputs
gt_classes = (
cat([p.gt_classes for p in proposals], dim=0) if len(proposals) else torch.empty(0)
)
_log_classification_stats(scores, gt_classes)
# parse box regression outputs
if len(proposals):
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0) # Nx4
assert not proposal_boxes.requires_grad, "Proposals should not require gradients!"
# If "gt_boxes" does not exist, the proposals must be all negative and
# should not be included in regression loss computation.
# Here we just use proposal_boxes as an arbitrary placeholder because its
# value won't be used in self.box_reg_loss().
gt_boxes = cat(
[(p.gt_boxes if p.has("gt_boxes") else p.proposal_boxes).tensor for p in proposals],
dim=0,
)
else:
proposal_boxes = gt_boxes = torch.empty((0, 4), device=proposal_deltas.device)
# loss weights
if self.cls_loss_weight is not None and self.cls_loss_weight.device != scores.device:
self.cls_loss_weight = self.cls_loss_weight.to(scores.device)
if self.focal_scaled_loss is not None:
loss_cls = self.focal_loss(scores, gt_classes, gamma=self.focal_scaled_loss)
else:
loss_cls = cross_entropy(scores, gt_classes, reduction="mean") if self.cls_loss_weight is None else \
cross_entropy(scores, gt_classes, reduction="mean", weight=self.cls_loss_weight)
losses = {
"loss_cls": loss_cls,
"loss_box_reg": self.box_reg_loss(
proposal_boxes, gt_boxes, proposal_deltas, gt_classes
),
}
return {k: v * self.loss_weight.get(k, 1.0) for k, v in losses.items()}
def focal_loss(self, inputs, targets, alpha=0.25, gamma=0.5, reduction="mean", mode='softmax'):
"""Inspired by RetinaNet implementation"""
if mode == 'sigmoid': # original focal loss implementation, except we include bg loss
targets = F.one_hot(targets, num_classes=self.num_classes + 1).to(inputs.dtype) # create binary label for each logit entry, including bg loss
p = torch.sigmoid(inputs)
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = p * targets + (1 - p) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
elif mode == 'softmax':
only_fg = False # if True, only fg rois are attached the focal loss scaling
#gamma = 0.3 # 0.5 # 0.8 # 1.5 # 1.0
alpha = -1 # no binary target in this case; instead, we can use bg loss weight
if targets.numel() == 0 and reduction == "mean":
return input.sum() * 0.0 # connect the gradient
ce_loss = F.cross_entropy(inputs, targets, reduction="none")
p = F.softmax(inputs, dim=-1)
p_t = p[torch.arange(p.size(0)).to(p.device), targets] # get prob of target class
if only_fg: # apply scaling to only fg rois
roi_wise_gamma = torch.zeros(p.size(0)).to(p.device)
roi_wise_gamma[targets != self.num_classes] = gamma
gamma = roi_wise_gamma
loss = ce_loss * ((1 - p_t) ** gamma)
# if alpha >= 0:
# alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
# loss = alpha_t * loss
# bg loss weight
if self.cls_loss_weight is not None:
loss_weight = torch.ones(loss.size(0)).to(p.device)
loss_weight[targets == self.num_classes] = self.cls_loss_weight[-1].item()
loss = loss * loss_weight
if reduction == "mean":
loss = loss.mean()
elif reduction == "sum":
loss = loss.sum()
return loss
def box_reg_loss(self, proposal_boxes, gt_boxes, pred_deltas, gt_classes):
"""
Args:
All boxes are tensors with the same shape Rx(4 or 5).
gt_classes is a long tensor of shape R, the gt class label of each proposal.
R shall be the number of proposals.
"""
box_dim = proposal_boxes.shape[1] # 4 or 5
# Regression loss is only computed for foreground proposals (those matched to a GT)
fg_inds = nonzero_tuple((gt_classes >= 0) & (gt_classes < self.num_classes))[0]
if pred_deltas.shape[1] == box_dim: # cls-agnostic regression
fg_pred_deltas = pred_deltas[fg_inds]
else:
fg_pred_deltas = pred_deltas.view(-1, self.num_classes, box_dim)[
fg_inds, gt_classes[fg_inds]
]
if self.box_reg_loss_type == "smooth_l1":
gt_pred_deltas = self.box2box_transform.get_deltas(
proposal_boxes[fg_inds],
gt_boxes[fg_inds],
)
loss_box_reg = smooth_l1_loss(
fg_pred_deltas, gt_pred_deltas, self.smooth_l1_beta, reduction="sum"
)
elif self.box_reg_loss_type == "giou":
fg_pred_boxes = self.box2box_transform.apply_deltas(
fg_pred_deltas, proposal_boxes[fg_inds]
)
loss_box_reg = giou_loss(fg_pred_boxes, gt_boxes[fg_inds], reduction="sum")
else:
raise ValueError(f"Invalid bbox reg loss type '{self.box_reg_loss_type}'")
# The reg loss is normalized using the total number of regions (R), not the number
# of foreground regions even though the box regression loss is only defined on
# foreground regions. Why? Because doing so gives equal training influence to
# each foreground example. To see how, consider two different minibatches:
# (1) Contains a single foreground region
# (2) Contains 100 foreground regions
# If we normalize by the number of foreground regions, the single example in
# minibatch (1) will be given 100 times as much influence as each foreground
# example in minibatch (2). Normalizing by the total number of regions, R,
# means that the single example in minibatch (1) and each of the 100 examples
# in minibatch (2) are given equal influence.
return loss_box_reg / max(gt_classes.numel(), 1.0) # return 0 if empty
def inference(self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were
used to compute predictions. The ``proposal_boxes`` field is expected.
Returns:
list[Instances]: same as `fast_rcnn_inference`.
list[Tensor]: same as `fast_rcnn_inference`.
"""
boxes = self.predict_boxes(predictions, proposals)
scores = self.predict_probs(predictions, proposals)
image_shapes = [x.image_size for x in proposals]
scores_bf_multiply = scores # as a backup
if self.multiply_rpn_score:
rpn_scores = [p.get('objectness_logits') for p in proposals]
# filter based on rpn_scores
# boxes = (boxes[0][rpn_scores[0] > 0.9],)
# scores = (scores[0][rpn_scores[0] > 0.9],)
# rpn_scores = [rpn_scores[0][rpn_scores[0] > 0.9]]
# scores_bf_multiply = scores # as a backup
#rpn_scores = [p.get('objectness_logits').sigmoid() for p in proposals]
scores = [(torch.sigmoid(s) * torch.sigmoid(rpn_s[:, None])) ** 0.5 for s, rpn_s in zip(scores, rpn_scores)]
return fast_rcnn_inference(
boxes,
scores,
image_shapes,
self.test_score_thresh,
self.test_nms_thresh,
self.soft_nms_enabled,
self.soft_nms_method,
self.soft_nms_sigma,
self.soft_nms_prune,
self.test_topk_per_image,
scores_bf_multiply = scores_bf_multiply if self.multiply_rpn_score else None,
)
def predict_boxes_for_gt_classes(self, predictions, proposals):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were used
to compute predictions. The fields ``proposal_boxes``, ``gt_classes`` are expected.
Returns:
list[Tensor]:
A list of Tensors of predicted boxes for GT classes in case of
class-specific box head. Element i of the list has shape (Ri, B), where Ri is
the number of proposals for image i and B is the box dimension (4 or 5)
"""
if not len(proposals):
return []
scores, proposal_deltas = predictions
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0)
N, B = proposal_boxes.shape
predict_boxes = self.box2box_transform.apply_deltas(
proposal_deltas, proposal_boxes
) # Nx(KxB)
K = predict_boxes.shape[1] // B
if K > 1:
gt_classes = torch.cat([p.gt_classes for p in proposals], dim=0)
# Some proposals are ignored or have a background class. Their gt_classes
# cannot be used as index.
gt_classes = gt_classes.clamp_(0, K - 1)
predict_boxes = predict_boxes.view(N, K, B)[
torch.arange(N, dtype=torch.long, device=predict_boxes.device), gt_classes
]
num_prop_per_image = [len(p) for p in proposals]
return predict_boxes.split(num_prop_per_image)
def predict_boxes(
self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]
):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were
used to compute predictions. The ``proposal_boxes`` field is expected.
Returns:
list[Tensor]:
A list of Tensors of predicted class-specific or class-agnostic boxes
for each image. Element i has shape (Ri, K * B) or (Ri, B), where Ri is
the number of proposals for image i and B is the box dimension (4 or 5)
"""
if not len(proposals):
return []
_, proposal_deltas = predictions
num_prop_per_image = [len(p) for p in proposals]
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0)
if self.no_box_delta:
predict_boxes = proposal_boxes
else:
predict_boxes = self.box2box_transform.apply_deltas(
proposal_deltas,
proposal_boxes,
) # Nx(KxB)
return predict_boxes.split(num_prop_per_image)
def predict_probs(
self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]
):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were
used to compute predictions.
Returns:
list[Tensor]:
A list of Tensors of predicted class probabilities for each image.
Element i has shape (Ri, K + 1), where Ri is the number of proposals for image i.
"""
scores, _ = predictions
num_inst_per_image = [len(p) for p in proposals]
# probs = F.softmax(scores, dim=-1)
probs = scores
return probs.split(num_inst_per_image, dim=0)
class OLDFastRCNNOutputLayers(nn.Module):
"""
Two linear layers for predicting Fast R-CNN outputs:
1. proposal-to-detection box regression deltas
2. classification scores
"""
@configurable
def __init__(
self,
input_shape: ShapeSpec,
*,
box2box_transform,
num_classes: int,
test_score_thresh: float = 0.0,
test_nms_thresh: float = 0.5,
test_topk_per_image: int = 100,
cls_agnostic_bbox_reg: bool = False,
smooth_l1_beta: float = 0.0,
box_reg_loss_type: str = "smooth_l1",
loss_weight: Union[float, Dict[str, float]] = 1.0,
no_box_delta: bool = False,
):
"""
NOTE: this interface is experimental.
Args:
input_shape (ShapeSpec): shape of the input feature to this module
box2box_transform (Box2BoxTransform or Box2BoxTransformRotated):
num_classes (int): number of foreground classes
test_score_thresh (float): threshold to filter predictions results.
test_nms_thresh (float): NMS threshold for prediction results.
test_topk_per_image (int): number of top predictions to produce per image.
cls_agnostic_bbox_reg (bool): whether to use class agnostic for bbox regression
smooth_l1_beta (float): transition point from L1 to L2 loss. Only used if
`box_reg_loss_type` is "smooth_l1"
box_reg_loss_type (str): Box regression loss type. One of: "smooth_l1", "giou"
loss_weight (float|dict): weights to use for losses. Can be single float for weighting
all losses, or a dict of individual weightings. Valid dict keys are:
* "loss_cls": applied to classification loss
* "loss_box_reg": applied to box regression loss
"""
super().__init__()
if isinstance(input_shape, int): # some backward compatibility
input_shape = ShapeSpec(channels=input_shape)
self.num_classes = num_classes
input_size = input_shape.channels * (input_shape.width or 1) * (input_shape.height or 1)
# prediction layer for num_classes foreground classes and one background class (hence + 1)
self.cls_score = nn.Linear(input_size, num_classes + 1)
num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
box_dim = len(box2box_transform.weights)
self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)
nn.init.normal_(self.cls_score.weight, std=0.01)
nn.init.normal_(self.bbox_pred.weight, std=0.001)
for l in [self.cls_score, self.bbox_pred]:
nn.init.constant_(l.bias, 0)
self.box2box_transform = box2box_transform
self.smooth_l1_beta = smooth_l1_beta
self.test_score_thresh = test_score_thresh
self.test_nms_thresh = test_nms_thresh
self.test_topk_per_image = test_topk_per_image
self.box_reg_loss_type = box_reg_loss_type
if isinstance(loss_weight, float):
loss_weight = {"loss_cls": loss_weight, "loss_box_reg": loss_weight}
self.loss_weight = loss_weight
self.no_box_delta = no_box_delta
@classmethod
def from_config(cls, cfg, input_shape):
return {
"input_shape": input_shape,
"box2box_transform": Box2BoxTransform(weights=cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS),
# fmt: off
"num_classes" : cfg.MODEL.ROI_HEADS.NUM_CLASSES,
"cls_agnostic_bbox_reg" : cfg.MODEL.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG,
"smooth_l1_beta" : cfg.MODEL.ROI_BOX_HEAD.SMOOTH_L1_BETA,
"test_score_thresh" : cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST,
"test_nms_thresh" : cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST,
"test_topk_per_image" : cfg.TEST.DETECTIONS_PER_IMAGE,
"box_reg_loss_type" : cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_TYPE,
"loss_weight" : {"loss_box_reg": cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_WEIGHT},
"no_box_delta" : cfg.MODEL.CLIP.NO_BOX_DELTA or cfg.MODEL.CLIP.CROP_REGION_TYPE == 'GT',
# fmt: on
}
def forward(self, x):
"""
Args:
x: per-region features of shape (N, ...) for N bounding boxes to predict.
Returns:
(Tensor, Tensor):
First tensor: shape (N,K+1), scores for each of the N box. Each row contains the
scores for K object categories and 1 background class.
Second tensor: bounding box regression deltas for each box. Shape is shape (N,Kx4),
or (N,4) for class-agnostic regression.
"""
if x.dim() > 2:
x = torch.flatten(x, start_dim=1)
scores = self.cls_score(x)
proposal_deltas = self.bbox_pred(x)
return scores, proposal_deltas
def losses(self, predictions, proposals):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were used
to compute predictions. The fields ``proposal_boxes``, ``gt_boxes``,
``gt_classes`` are expected.
Returns:
Dict[str, Tensor]: dict of losses
"""
scores, proposal_deltas = predictions
# parse classification outputs
gt_classes = (
cat([p.gt_classes for p in proposals], dim=0) if len(proposals) else torch.empty(0)
)
_log_classification_stats(scores, gt_classes)
# parse box regression outputs
if len(proposals):
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0) # Nx4
assert not proposal_boxes.requires_grad, "Proposals should not require gradients!"
# If "gt_boxes" does not exist, the proposals must be all negative and
# should not be included in regression loss computation.
# Here we just use proposal_boxes as an arbitrary placeholder because its
# value won't be used in self.box_reg_loss().
gt_boxes = cat(
[(p.gt_boxes if p.has("gt_boxes") else p.proposal_boxes).tensor for p in proposals],
dim=0,
)
else:
proposal_boxes = gt_boxes = torch.empty((0, 4), device=proposal_deltas.device)
losses = {
"loss_cls": cross_entropy(scores, gt_classes, reduction="mean"),
"loss_box_reg": self.box_reg_loss(
proposal_boxes, gt_boxes, proposal_deltas, gt_classes
),
}
return {k: v * self.loss_weight.get(k, 1.0) for k, v in losses.items()}
def box_reg_loss(self, proposal_boxes, gt_boxes, pred_deltas, gt_classes):
"""
Args:
All boxes are tensors with the same shape Rx(4 or 5).
gt_classes is a long tensor of shape R, the gt class label of each proposal.
R shall be the number of proposals.
"""
box_dim = proposal_boxes.shape[1] # 4 or 5
# Regression loss is only computed for foreground proposals (those matched to a GT)
fg_inds = nonzero_tuple((gt_classes >= 0) & (gt_classes < self.num_classes))[0]
if pred_deltas.shape[1] == box_dim: # cls-agnostic regression
fg_pred_deltas = pred_deltas[fg_inds]
else:
fg_pred_deltas = pred_deltas.view(-1, self.num_classes, box_dim)[
fg_inds, gt_classes[fg_inds]
]
if self.box_reg_loss_type == "smooth_l1":
gt_pred_deltas = self.box2box_transform.get_deltas(
proposal_boxes[fg_inds],
gt_boxes[fg_inds],
)
loss_box_reg = smooth_l1_loss(
fg_pred_deltas, gt_pred_deltas, self.smooth_l1_beta, reduction="sum"
)
elif self.box_reg_loss_type == "giou":
fg_pred_boxes = self.box2box_transform.apply_deltas(
fg_pred_deltas, proposal_boxes[fg_inds]
)
loss_box_reg = giou_loss(fg_pred_boxes, gt_boxes[fg_inds], reduction="sum")
else:
raise ValueError(f"Invalid bbox reg loss type '{self.box_reg_loss_type}'")
# The reg loss is normalized using the total number of regions (R), not the number
# of foreground regions even though the box regression loss is only defined on
# foreground regions. Why? Because doing so gives equal training influence to
# each foreground example. To see how, consider two different minibatches:
# (1) Contains a single foreground region
# (2) Contains 100 foreground regions
# If we normalize by the number of foreground regions, the single example in
# minibatch (1) will be given 100 times as much influence as each foreground
# example in minibatch (2). Normalizing by the total number of regions, R,
# means that the single example in minibatch (1) and each of the 100 examples
# in minibatch (2) are given equal influence.
return loss_box_reg / max(gt_classes.numel(), 1.0) # return 0 if empty
def inference(self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were
used to compute predictions. The ``proposal_boxes`` field is expected.
Returns:
list[Instances]: same as `fast_rcnn_inference`.
list[Tensor]: same as `fast_rcnn_inference`.
"""
boxes = self.predict_boxes(predictions, proposals)
scores = self.predict_probs(predictions, proposals)
image_shapes = [x.image_size for x in proposals]
return fast_rcnn_inference(
boxes,
scores,
image_shapes,
self.test_score_thresh,
self.test_nms_thresh,
self.test_topk_per_image,
)
def predict_boxes_for_gt_classes(self, predictions, proposals):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were used
to compute predictions. The fields ``proposal_boxes``, ``gt_classes`` are expected.
Returns:
list[Tensor]:
A list of Tensors of predicted boxes for GT classes in case of
class-specific box head. Element i of the list has shape (Ri, B), where Ri is
the number of proposals for image i and B is the box dimension (4 or 5)
"""
if not len(proposals):
return []
scores, proposal_deltas = predictions
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0)
N, B = proposal_boxes.shape
predict_boxes = self.box2box_transform.apply_deltas(
proposal_deltas, proposal_boxes
) # Nx(KxB)
K = predict_boxes.shape[1] // B
if K > 1:
gt_classes = torch.cat([p.gt_classes for p in proposals], dim=0)
# Some proposals are ignored or have a background class. Their gt_classes
# cannot be used as index.
gt_classes = gt_classes.clamp_(0, K - 1)
predict_boxes = predict_boxes.view(N, K, B)[
torch.arange(N, dtype=torch.long, device=predict_boxes.device), gt_classes
]
num_prop_per_image = [len(p) for p in proposals]
return predict_boxes.split(num_prop_per_image)
def predict_boxes(
self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]
):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were
used to compute predictions. The ``proposal_boxes`` field is expected.
Returns:
list[Tensor]:
A list of Tensors of predicted class-specific or class-agnostic boxes
for each image. Element i has shape (Ri, K * B) or (Ri, B), where Ri is
the number of proposals for image i and B is the box dimension (4 or 5)
"""
if not len(proposals):
return []
_, proposal_deltas = predictions
num_prop_per_image = [len(p) for p in proposals]
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0)
if self.no_box_delta:
predict_boxes = proposal_boxes
else:
predict_boxes = self.box2box_transform.apply_deltas(
proposal_deltas,
proposal_boxes,
) # Nx(KxB)
return predict_boxes.split(num_prop_per_image)
def predict_probs(
self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]
):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were
used to compute predictions.
Returns:
list[Tensor]:
A list of Tensors of predicted class probabilities for each image.
Element i has shape (Ri, K + 1), where Ri is the number of proposals for image i.
"""
scores, _ = predictions
num_inst_per_image = [len(p) for p in proposals]
probs = F.softmax(scores, dim=-1)
return probs.split(num_inst_per_image, dim=0)