jwyang
first commit
4121bec
raw history blame
No virus
35.4 kB
from collections import OrderedDict
from typing import Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from .backbone import Backbone
from .build import BACKBONE_REGISTRY
from detectron2.layers.blocks import FrozenBatchNorm2d
from detectron2.layers import ShapeSpec
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, norm_type='FronzenBN'):
super().__init__()
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
if norm_type == 'FronzenBN':
self.bn1 = FrozenBatchNorm2d(planes) # nn.BatchNorm2d(planes)
elif norm_type == 'SyncBN':
self.bn1 = nn.SyncBatchNorm(planes)
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
if norm_type == 'FronzenBN':
self.bn2 = FrozenBatchNorm2d(planes) # nn.BatchNorm2d(planes)
elif norm_type == 'SyncBN':
self.bn2 = nn.SyncBatchNorm(planes)
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
if norm_type == 'FronzenBN':
self.bn3 = FrozenBatchNorm2d(planes * self.expansion) # nn.BatchNorm2d(planes * self.expansion)
elif norm_type == 'SyncBN':
self.bn3 = nn.SyncBatchNorm(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride
if stride > 1 or inplanes != planes * Bottleneck.expansion:
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
if norm_type == 'FronzenBN':
this_norm = FrozenBatchNorm2d(planes * self.expansion) #("1", nn.BatchNorm2d(planes * self.expansion))
elif norm_type == 'SyncBN':
this_norm = nn.SyncBatchNorm(planes * self.expansion)
self.downsample = nn.Sequential(OrderedDict([
("-1", nn.AvgPool2d(stride)),
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
("1", this_norm), #("1", nn.BatchNorm2d(planes * self.expansion))
]))
def forward(self, x: torch.Tensor):
identity = x
out = self.relu(self.bn1(self.conv1(x)))
out = self.relu(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class AttentionPool2d(nn.Module):
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x):
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
x, _ = F.multi_head_attention_forward(
query=x, key=x, value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False
)
return x[0]
class ModifiedResNet(Backbone):
"""
Extended from CLIP implementation. It contains following changes:
1. change all nn.BatchNorm2d() to FrozenBatchNorm2d(), due to small batch size of detection training
2. add self._out_feature_strides according to standard ResNet
2. modify forward() to be compatible with Detectron2
3. add freeze() and output_shape() to be compatible with Detectron2
4. add build_clip_resnet_backbone() to build this ModifiedResNet
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64,
out_features=None, freeze_at=0, depth=None, pool_vec=True, create_att_pool=False, norm_type='FronzenBN'):
super().__init__()
self.output_dim = output_dim
self.input_resolution = input_resolution
self.norm_type = norm_type
# the 3-layer stem
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
if norm_type == 'FronzenBN':
self.bn1 = FrozenBatchNorm2d(width // 2) # nn.BatchNorm2d(width // 2)
elif norm_type == 'SyncBN':
self.bn1 = nn.SyncBatchNorm(width // 2)
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
if norm_type == 'FronzenBN':
self.bn2 = FrozenBatchNorm2d(width // 2) # nn.BatchNorm2d(width // 2)
elif norm_type == 'SyncBN':
self.bn2 = nn.SyncBatchNorm(width // 2)
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
if norm_type == 'FronzenBN':
self.bn3 = FrozenBatchNorm2d(width) # nn.BatchNorm2d(width)
elif norm_type == 'SyncBN':
self.bn3 = nn.SyncBatchNorm(width)
self.avgpool = nn.AvgPool2d(2)
self.relu = nn.ReLU(inplace=True)
# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
if 'res5' in out_features: # FPN
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
else: # C4, layer4 created here won't be used in backbone, but used in roi_head
self.layer4 = self._make_layer(width * 8, layers[3], stride=2) # None
self.pool_vec = pool_vec
if self.pool_vec or create_att_pool: # pool a vector representation for an image
embed_dim = width * 32 # the ResNet feature dimension
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
# if create_att_pool: # freeze attnpool layer
# for p in self.attnpool.parameters(): p.requires_grad = False
self._out_features = out_features if out_features else []
if depth in [50,101]: # resnet50 or resnet 101
# FPN: ["res2", "res3", "res4", "res5"]; C4: ["res4"]
self._out_feature_channels = {'stem': 64, 'res2': 256, 'res3': 512, 'res4': 1024, 'res5': 2048} if 'res5' in self._out_features \
else {'stem': 64, 'res2': 256, 'res3': 512, 'res4': 1024}
self._out_feature_strides = {'stem': 4, 'res2': 4, 'res3': 8, 'res4': 16, 'res5': 32} if 'res5' in self._out_features \
else {'stem': 4, 'res2': 4, 'res3': 8, 'res4': 16} # anti-aliasing strided conv???
elif depth in [200]: # resnet50x4
# FPN: ["res2", "res3", "res4", "res5"]; C4: ["res4"]
self._out_feature_channels = {'stem': 80, 'res2': 320, 'res3': 640, 'res4': 1280, 'res5': 2560} if 'res5' in self._out_features \
else {'stem': 80, 'res2': 320, 'res3': 640, 'res4': 1280}
self._out_feature_strides = {'stem': 4, 'res2': 4, 'res3': 8, 'res4': 16, 'res5': 32} if 'res5' in self._out_features \
else {'stem': 4, 'res2': 4, 'res3': 8, 'res4': 16} # anti-aliasing strided conv???
self.freeze(freeze_at)
def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride, norm_type=self.norm_type)]
self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes, norm_type=self.norm_type))
return nn.Sequential(*layers)
def forward(self, x):
def stem(x):
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
x = self.relu(bn(conv(x)))
x = self.avgpool(x)
return x
assert x.dim() == 4, f"ResNet takes an input of shape (N, C, H, W). Got {x.shape} instead!"
outputs = {}
x = x.type(self.conv1.weight.dtype) # det2 resnet50: [3, 800, 1216]; CLIP resnet50: [3, 224, 224]
x = stem(x) # det2 resnet50: [64, 200, 304]; CLIP resnet50: [64, 56, 56]
if "stem" in self._out_features:
outputs["stem"] = x
x = self.layer1(x) # det2 resnet50: [256, 200, 304]; CLIP resnet50: [256, 56, 56]
outputs['res2'] = x if "res2" in self._out_features else None
x = self.layer2(x) # det2 resnet50: [512, 100, 152]; CLIP resnet50: [512, 28, 28]
outputs['res3'] = x if "res3" in self._out_features else None
x = self.layer3(x) # det2 resnet50: [1024, 50, 76]; CLIP resnet50: [1024, 14, 14]
outputs['res4'] = x if "res4" in self._out_features else None
x = self.layer4(x) if "res5" in self._out_features else x # det2 resnet50: [2048, 25, 38]; CLIP resnet50: [2048, 7, 7]
outputs['res5'] = x if "res5" in self._out_features else None
if self.pool_vec: # pool a vector representation for an image, for global image classification
x = self.attnpool(x) # CLIP resnet50: [1024]
return x
else: # for FPN
return outputs
def freeze(self, freeze_at=0):
"""
Freeze the first several stages of the ResNet. Commonly used in
fine-tuning.
Layers that produce the same feature map spatial size are defined as one
"stage" by :paper:`FPN`.
Args:
freeze_at (int): number of stages to freeze.
`1` means freezing the stem. `2` means freezing the stem and
one residual stage, etc.
Returns:
nn.Module: this ResNet itself
"""
def cnnblockbase_freeze(nn_module):
"""
Make this block not trainable.
This method sets all parameters to `requires_grad=False`,
and convert all BatchNorm layers to FrozenBatchNorm
Returns:
the block itself
"""
for p in nn_module.parameters():
p.requires_grad = False
FrozenBatchNorm2d.convert_frozen_batchnorm(nn_module)
if freeze_at >= 1: # stem
cnnblockbase_freeze(self.conv1)
cnnblockbase_freeze(self.bn1)
cnnblockbase_freeze(self.conv2)
cnnblockbase_freeze(self.bn2)
cnnblockbase_freeze(self.conv3)
cnnblockbase_freeze(self.bn3)
# each stage is a torch.nn.modules.container.Sequential
for idx, stage in enumerate([self.layer1, self.layer2, self.layer3, self.layer4], start=2):
if freeze_at >= idx:
for block in stage.children(): # each block is a Bottleneck
cnnblockbase_freeze(block)
return self
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
)
for name in self._out_features
}
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
def forward(self, x: torch.Tensor):
return self.resblocks(x)
class VisualTransformer(nn.Module):
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(width, layers, heads)
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
def forward(self, x: torch.Tensor):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_post(x[:, 0, :])
if self.proj is not None:
x = x @ self.proj
return x
class CLIP(Backbone):
def __init__(self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
out_features,
freeze_at,
):
super().__init__()
self.context_length = context_length
if isinstance(vision_layers, (tuple, list)):
vision_heads = vision_width * 32 // 64
self.visual = ModifiedResNet(
layers=vision_layers,
output_dim=embed_dim,
heads=vision_heads,
input_resolution=image_resolution,
width=vision_width,
out_features=out_features,
freeze_at=freeze_at,
)
else:
vision_heads = vision_width // 64
self.visual = VisualTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim
)
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask()
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
if isinstance(self.visual, ModifiedResNet):
if self.visual.attnpool is not None:
std = self.visual.attnpool.c_proj.in_features ** -0.5
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
for name, param in resnet_block.named_parameters():
if name.endswith("bn3.weight"):
nn.init.zeros_(param)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image):
return self.visual(image.type(self.dtype))
def encode_text(self, text, norm=True):
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
if norm:
x = x / x.norm(dim=-1, keepdim=True)
return x
def forward(self, image, text):
image_features = self.encode_image(image)
text_features = self.encode_text(text)
# normalized features
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logit_scale * text_features @ image_features.t()
# shape = [global_batch_size, global_batch_size]
return logits_per_image, logits_per_text
def convert_weights(model: nn.Module):
"""Convert applicable model parameters to fp16"""
def _convert_weights_to_fp16(l):
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
l.weight.data = l.weight.data.half()
if l.bias is not None:
l.bias.data = l.bias.data.half()
if isinstance(l, nn.MultiheadAttention):
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
tensor = getattr(l, attr)
if tensor is not None:
tensor.data = tensor.data.half()
for name in ["text_projection", "proj"]:
if hasattr(l, name):
attr = getattr(l, name)
if attr is not None:
attr.data = attr.data.half()
model.apply(_convert_weights_to_fp16)
def build_model(state_dict: dict):
vit = "visual.proj" in state_dict
if vit:
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
image_resolution = vision_patch_size * grid_size
else:
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
vision_layers = tuple(counts)
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
vision_patch_size = None
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
image_resolution = output_width * 32
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
model = CLIP(
embed_dim,
image_resolution, vision_layers, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
)
for key in ["input_resolution", "context_length", "vocab_size"]:
if key in state_dict:
del state_dict[key]
convert_weights(model)
model.load_state_dict(state_dict)
return model.eval()
@BACKBONE_REGISTRY.register()
def build_vit_clip(cfg, input_shape):
"""
Create the whole CLIP instance from config.
Returns:
CLIP: a :class:`CLIP` instance.
"""
# port standard ResNet config to CLIP ModifiedResNet
freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT
out_features = ['res5'] # includes the whole ResNet # cfg.MODEL.RESNETS.OUT_FEATURES
depth = cfg.MODEL.RESNETS.DEPTH
# num_blocks_per_stage = {
# 18: [2, 2, 2, 2],
# 34: [3, 4, 6, 3],
# 50: [3, 4, 6, 3],
# 101: [3, 4, 23, 3],
# 152: [3, 8, 36, 3],
# }[depth]
vision_layers = 12 # num_blocks_per_stage
vision_width = 768 # cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
# default configs of CLIP
embed_dim = 512 # 1024
image_resolution = 224
vision_patch_size = 32 # None
context_length = 77
vocab_size = 49408
transformer_width = 512
transformer_heads = 8
transformer_layers = 12
model = CLIP(
embed_dim,
image_resolution, vision_layers, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers,
out_features, freeze_at
)
return model
@BACKBONE_REGISTRY.register()
def build_resnet_clip(cfg, input_shape):
"""
Create the whole CLIP instance from config.
Returns:
CLIP: a :class:`CLIP` instance.
"""
# port standard ResNet config to CLIP ModifiedResNet
freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT
out_features = ['res5'] # includes the whole ResNet # cfg.MODEL.RESNETS.OUT_FEATURES
depth = cfg.MODEL.RESNETS.DEPTH
num_blocks_per_stage = {
18: [2, 2, 2, 2],
34: [3, 4, 6, 3],
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3],
200: [4, 6, 10, 6], # flag for ResNet50x4
}[depth]
vision_layers = num_blocks_per_stage
vision_width = {
50: 64,
101: 64,
200: 80, # flag for ResNet50x4
}[depth] # cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
# default configs of CLIP
embed_dim = {
50: 1024,
101: 512,
200: 640, # flag for ResNet50x4
}[depth]
vision_heads = vision_width * 32 // 64
image_resolution = {
50: 224,
101: 224,
200: 288, # flag for ResNet50x4
}[depth]
vision_patch_size = None
context_length = 77
vocab_size = 49408
transformer_width = {
50: 512,
101: 512,
200: 640, # flag for ResNet50x4
}[depth]
transformer_heads = {
50: 8,
101: 8,
200: 10, # flag for ResNet50x4
}[depth]
transformer_layers = 12
model = CLIP(
embed_dim,
image_resolution, vision_layers, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers,
out_features, freeze_at
)
return model
@BACKBONE_REGISTRY.register()
def build_clip_resnet_backbone(cfg, input_shape):
"""
Create a CLIP ResNet instance from config.
Returns:
ModifiedResNet: a :class:`ModifiedResNet` instance.
"""
# port standard ResNet config to CLIP ModifiedResNet
freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT
out_features = cfg.MODEL.RESNETS.OUT_FEATURES
depth = cfg.MODEL.RESNETS.DEPTH
# num_groups = cfg.MODEL.RESNETS.NUM_GROUPS
# width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP
# bottleneck_channels = num_groups * width_per_group
# in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
# out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS
# stride_in_1x1 = cfg.MODEL.RESNETS.STRIDE_IN_1X1
# res5_dilation = cfg.MODEL.RESNETS.RES5_DILATION
# deform_on_per_stage = cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE
# deform_modulated = cfg.MODEL.RESNETS.DEFORM_MODULATED
# deform_num_groups = cfg.MODEL.RESNETS.DEFORM_NUM_GROUPS
num_blocks_per_stage = {
18: [2, 2, 2, 2],
34: [3, 4, 6, 3],
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3],
200: [4, 6, 10, 6], # flag for ResNet50x4
}[depth]
vision_layers = num_blocks_per_stage
vision_width = {
50: 64,
101: 64,
200: 80, # flag for ResNet50x4
}[depth] # cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
# default configs of CLIP ModifiedResNet, but not used if only building ModifiedResNet as backbone
embed_dim = {
50: 1024,
101: 512,
200: 640, # flag for ResNet50x4
}[depth]
vision_heads = vision_width * 32 // 64
image_resolution = {
50: 224,
101: 224,
200: 288, # flag for ResNet50x4
}[depth]
# if combine {ModifiedResNet of CLIP, C4, text emb as classifier}, then has to use att_pool to match dimension
create_att_pool = True if (cfg.MODEL.ROI_HEADS.NAME in ['CLIPRes5ROIHeads', 'CLIPStandardROIHeads'] and cfg.MODEL.CLIP.USE_TEXT_EMB_CLASSIFIER)\
or cfg.MODEL.ROI_HEADS.NAME == 'PretrainRes5ROIHeads' else False
return ModifiedResNet(layers=vision_layers,
output_dim=embed_dim,
heads=vision_heads,
input_resolution=image_resolution,
width=vision_width,
out_features=out_features,
freeze_at=freeze_at,
depth=depth,
pool_vec=False,
create_att_pool=create_att_pool,
)
class CLIPLangEncoder(nn.Module):
def __init__(self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
out_features,
freeze_at,
):
super().__init__()
self.context_length = context_length
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask()
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
#self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self):
return self.transformer.resblocks[0].mlp[0].weight.dtype # torch.float32, not sure whether need to be fp16 in pretraining
def encode_text(self, text, only_eot=True, norm=True):
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
if only_eot:
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
if norm:
x = x / x.norm(dim=-1, keepdim=True)
return x
else:
# return embeddings for all tokens, instead of the eot embedding as CLIP implementation below
x = x @ self.text_projection
if norm:
x = x / x.norm(dim=-1, keepdim=True)
return x
def build_clip_language_encoder(cfg):
"""
Create the CLIP language encoder instance from config.
Returns:
CLIP: a :class:`CLIP` instance.
"""
# port standard ResNet config to CLIP ModifiedResNet
freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT
out_features = ['res5'] # includes the whole ResNet # cfg.MODEL.RESNETS.OUT_FEATURES
depth = cfg.MODEL.RESNETS.DEPTH
num_blocks_per_stage = {
18: [2, 2, 2, 2],
34: [3, 4, 6, 3],
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3],
200: [4, 6, 10, 6], # flag for ResNet50x4
}[depth]
vision_layers = num_blocks_per_stage
vision_width = {
50: 64,
101: 64,
200: 80, # flag for ResNet50x4
}[depth] # cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
# default configs of CLIP
embed_dim = {
50: 1024,
101: 512,
200: 640, # flag for ResNet50x4
}[depth]
vision_heads = vision_width * 32 // 64
image_resolution = {
50: 224,
101: 224,
200: 288, # flag for ResNet50x4
}[depth]
vision_patch_size = None
context_length = 77
vocab_size = 49408
transformer_width = {
50: 512,
101: 512,
200: 640, # flag for ResNet50x4
}[depth]
transformer_heads = {
50: 8,
101: 8,
200: 10, # flag for ResNet50x4
}[depth]
transformer_layers = 12
model = CLIPLangEncoder(
embed_dim,
image_resolution, vision_layers, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers,
out_features, freeze_at
)
return model