Spaces:
Runtime error
Runtime error
jiawei-ren
commited on
Commit
•
e8481f2
1
Parent(s):
58d92ee
init
Browse files- .gitignore +1 -0
- app.py +273 -0
- packages.txt +1 -0
- requirements.txt +5 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.idea/
|
app.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import torch
|
4 |
+
import seaborn as sns
|
5 |
+
import pandas as pd
|
6 |
+
import os
|
7 |
+
import os.path as osp
|
8 |
+
import ffmpeg
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch.nn.modules.loss import _Loss
|
12 |
+
from torch.utils.data import Dataset, DataLoader
|
13 |
+
|
14 |
+
NUM_PER_BUCKET = 1000
|
15 |
+
NOISE_SIGMA = 1
|
16 |
+
Y_UB = 10
|
17 |
+
Y_LB = 0
|
18 |
+
K = 1
|
19 |
+
B = 0
|
20 |
+
NUM_SEG = 5
|
21 |
+
sns.set_theme(palette='colorblind')
|
22 |
+
NUM_EPOCHS = 100
|
23 |
+
PRINT_FREQ = NUM_EPOCHS // 20
|
24 |
+
NUM_TRAIN_SAMPLES = NUM_PER_BUCKET * NUM_SEG
|
25 |
+
BATCH_SIZE = 256
|
26 |
+
|
27 |
+
|
28 |
+
def make_dataframe(x, y, method=None):
|
29 |
+
x = list(x[:, 0].detach().numpy())
|
30 |
+
y = list(y[:, 0].detach().numpy())
|
31 |
+
if method is not None:
|
32 |
+
method = [method for _ in range(len(x))]
|
33 |
+
df = pd.DataFrame({'x': x, 'y': y, 'Method': method})
|
34 |
+
else:
|
35 |
+
df = pd.DataFrame({'x': x, 'y': y})
|
36 |
+
return df
|
37 |
+
|
38 |
+
Y_demo = torch.linspace(Y_LB, Y_UB, 2).unsqueeze(-1)
|
39 |
+
X_demo = (Y_demo - B) / K
|
40 |
+
|
41 |
+
df_oracle = make_dataframe(X_demo, Y_demo, 'Oracle')
|
42 |
+
|
43 |
+
def prepare_data():
|
44 |
+
interval = (Y_UB - Y_LB) / NUM_SEG
|
45 |
+
all_x, all_y = [], []
|
46 |
+
for i in range(NUM_SEG):
|
47 |
+
uniform_y_distribution = torch.distributions.Uniform(Y_UB - (i+1)*interval, Y_UB-i*interval)
|
48 |
+
y_uniform = uniform_y_distribution.sample((NUM_TRAIN_SAMPLES, 1))
|
49 |
+
|
50 |
+
noise_distribution = torch.distributions.Normal(loc=0, scale=NOISE_SIGMA)
|
51 |
+
noise = noise_distribution.sample((NUM_TRAIN_SAMPLES, 1))
|
52 |
+
y_uniform_oracle = y_uniform - noise
|
53 |
+
|
54 |
+
x_uniform = (y_uniform_oracle - B) / K
|
55 |
+
all_x.append(x_uniform)
|
56 |
+
all_y.append(y_uniform)
|
57 |
+
return all_x, all_y
|
58 |
+
|
59 |
+
def select_data(all_x, all_y, sel_num):
|
60 |
+
sel_x, sel_y = [], []
|
61 |
+
prob = []
|
62 |
+
for i in range(NUM_SEG):
|
63 |
+
sel_x += all_x[i][:sel_num[i]]
|
64 |
+
sel_y += all_y[i][:sel_num[i]]
|
65 |
+
prob += [torch.tensor(sel_num[i]).float() for _ in range(sel_num[i])]
|
66 |
+
sel_x = torch.stack(sel_x)
|
67 |
+
sel_y = torch.stack(sel_y)
|
68 |
+
prob = torch.stack(prob)
|
69 |
+
return sel_x, sel_y, prob
|
70 |
+
|
71 |
+
|
72 |
+
def unzip_dataloader(training_loader):
|
73 |
+
all_x = []
|
74 |
+
all_y = []
|
75 |
+
for data, label, _ in training_loader:
|
76 |
+
all_x.append(data)
|
77 |
+
all_y.append(label)
|
78 |
+
all_x = torch.cat(all_x)
|
79 |
+
all_y = torch.cat(all_y)
|
80 |
+
return all_x, all_y
|
81 |
+
|
82 |
+
# Train the model
|
83 |
+
def train(train_loader, training_bundle, num_epochs):
|
84 |
+
training_df = make_dataframe(*unzip_dataloader(train_loader))
|
85 |
+
for epoch in range(num_epochs):
|
86 |
+
for model, optimizer, scheduler, criterion, criterion_name in training_bundle:
|
87 |
+
model.train()
|
88 |
+
for data, target, prob in train_loader:
|
89 |
+
optimizer.zero_grad()
|
90 |
+
pred = model(data)
|
91 |
+
if criterion_name == 'Reweight':
|
92 |
+
loss = criterion(pred, target, prob)
|
93 |
+
else:
|
94 |
+
loss = criterion(pred, target)
|
95 |
+
loss.backward()
|
96 |
+
optimizer.step()
|
97 |
+
scheduler.step()
|
98 |
+
if (epoch + 1) % PRINT_FREQ == 0:
|
99 |
+
visualize(training_df, training_bundle, epoch)
|
100 |
+
|
101 |
+
def visualize(training_df, training_bundle, epoch):
|
102 |
+
df = df_oracle
|
103 |
+
for model, optimizer, scheduler, criterion, criterion_name in training_bundle:
|
104 |
+
model.eval()
|
105 |
+
y = model(X_demo)
|
106 |
+
df = df.append(make_dataframe(X_demo, y, criterion_name), ignore_index=True)
|
107 |
+
sns.lineplot(data=df, x='x', y='y', hue='Method', estimator=None, ci=None)
|
108 |
+
sns.scatterplot(data=training_df, x='x', y='y', color='#003ea1', alpha=0.05, linewidths=0, s=100)
|
109 |
+
plt.xlim((Y_LB - B) / K, (Y_UB - B) / K)
|
110 |
+
plt.ylim(Y_LB, Y_UB)
|
111 |
+
plt.gca().axes.set_xlabel(r'$x$', fontsize=10)
|
112 |
+
plt.gca().axes.set_ylabel(r'$y$', fontsize=10)
|
113 |
+
plt.savefig('train_log/{:05d}.png'.format(epoch+1), bbox_inches='tight')
|
114 |
+
plt.close()
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
def make_video():
|
119 |
+
if osp.isfile('movie.mp4'):
|
120 |
+
os.remove('movie.mp4')
|
121 |
+
(
|
122 |
+
ffmpeg
|
123 |
+
.input('train_log/*.png', pattern_type='glob', framerate=3)
|
124 |
+
.output('movie.mp4')
|
125 |
+
.run()
|
126 |
+
)
|
127 |
+
|
128 |
+
class ReweightL2(_Loss):
|
129 |
+
def __init__(self, reweight='inverse'):
|
130 |
+
super(ReweightL2, self).__init__()
|
131 |
+
self.reweight = reweight
|
132 |
+
|
133 |
+
def forward(self, pred, target, prob):
|
134 |
+
reweight = self.reweight
|
135 |
+
if reweight == 'inverse':
|
136 |
+
inv_prob = prob.pow(-1)
|
137 |
+
elif reweight == 'sqrt_inv':
|
138 |
+
inv_prob = prob.pow(-0.5)
|
139 |
+
else:
|
140 |
+
raise NotImplementedError
|
141 |
+
inv_prob = inv_prob / inv_prob.sum()
|
142 |
+
loss = F.mse_loss(pred, target, reduction='none').sum(-1) * inv_prob
|
143 |
+
loss = loss.sum()
|
144 |
+
return loss
|
145 |
+
|
146 |
+
# we use a linear layer to regress the weight from height
|
147 |
+
class LinearModel(nn.Module):
|
148 |
+
def __init__(self, input_dim, output_dim):
|
149 |
+
super(LinearModel, self).__init__()
|
150 |
+
self.mlp = nn.Sequential(
|
151 |
+
nn.Linear(input_dim, output_dim),
|
152 |
+
)
|
153 |
+
|
154 |
+
def forward(self, x):
|
155 |
+
x = self.mlp(x)
|
156 |
+
return x
|
157 |
+
|
158 |
+
def prepare_model():
|
159 |
+
model = LinearModel(input_dim=1, output_dim=1)
|
160 |
+
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
|
161 |
+
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=NUM_EPOCHS)
|
162 |
+
return model, optimizer, scheduler
|
163 |
+
|
164 |
+
|
165 |
+
class BMCLoss(_Loss):
|
166 |
+
def __init__(self):
|
167 |
+
super(BMCLoss, self).__init__()
|
168 |
+
self.noise_sigma = NOISE_SIGMA
|
169 |
+
|
170 |
+
def forward(self, pred, target):
|
171 |
+
pred = pred.reshape(-1, 1)
|
172 |
+
target = target.reshape(-1, 1)
|
173 |
+
noise_var = self.noise_sigma ** 2
|
174 |
+
loss = bmc_loss(pred, target, noise_var)
|
175 |
+
return loss
|
176 |
+
|
177 |
+
|
178 |
+
def bmc_loss(pred, target, noise_var):
|
179 |
+
logits = - 0.5 * (pred - target.T).pow(2) / noise_var
|
180 |
+
loss = F.cross_entropy(logits, torch.arange(pred.shape[0]))
|
181 |
+
|
182 |
+
return loss * (2 * noise_var)
|
183 |
+
|
184 |
+
def regress(train_loader):
|
185 |
+
training_bundle = []
|
186 |
+
criterions = {
|
187 |
+
'MSE': torch.nn.MSELoss(),
|
188 |
+
'Reweight': ReweightL2(),
|
189 |
+
'Balanced MSE': BMCLoss(),
|
190 |
+
}
|
191 |
+
for criterion_name in criterions:
|
192 |
+
criterion = criterions[criterion_name]
|
193 |
+
model, optimizer, scheduler = prepare_model()
|
194 |
+
training_bundle.append((model, optimizer, scheduler, criterion, criterion_name))
|
195 |
+
train(train_loader, training_bundle, NUM_EPOCHS)
|
196 |
+
|
197 |
+
class DummyDataset(Dataset):
|
198 |
+
def __init__(self, inputs, targets, prob):
|
199 |
+
self.inputs = inputs
|
200 |
+
self.targets = targets
|
201 |
+
self.prob = prob
|
202 |
+
|
203 |
+
def __getitem__(self, index):
|
204 |
+
return self.inputs[index], self.targets[index], self.prob[index]
|
205 |
+
|
206 |
+
def __len__(self):
|
207 |
+
return len(self.inputs)
|
208 |
+
|
209 |
+
def run(num1, num2, num3, num4, num5, random_seed, submit):
|
210 |
+
sel_num = [num1, num2, num3, num4, num5]
|
211 |
+
sel_num = [int(num/100*NUM_PER_BUCKET) for num in sel_num]
|
212 |
+
torch.manual_seed(int(random_seed))
|
213 |
+
all_x, all_y = prepare_data()
|
214 |
+
sel_x, sel_y, prob = select_data(all_x, all_y, sel_num)
|
215 |
+
train_loader = DataLoader(DummyDataset(sel_x, sel_y, prob), BATCH_SIZE, shuffle=True)
|
216 |
+
|
217 |
+
training_df = make_dataframe(sel_x, sel_y)
|
218 |
+
g = sns.jointplot(data=training_df, x='x', y='y', color='#003ea1', alpha=0.1, linewidths=0, s=100,
|
219 |
+
marginal_kws=dict(bins=torch.linspace(Y_LB, Y_UB, steps=NUM_SEG+1), rug=True),
|
220 |
+
xlim=((Y_LB - B) / K, (Y_UB - B) / K),
|
221 |
+
ylim=(Y_LB, Y_UB),
|
222 |
+
space=0.1,
|
223 |
+
height=8,
|
224 |
+
ratio=2
|
225 |
+
)
|
226 |
+
g.ax_marg_x.remove()
|
227 |
+
sns.lineplot(data=df_oracle, x='x', y='y', hue='Method', ax=g.ax_joint, legend=False)
|
228 |
+
plt.gca().axes.set_xlabel(r'$x$', fontsize=10)
|
229 |
+
plt.gca().axes.set_ylabel(r'$y$', fontsize=10)
|
230 |
+
plt.savefig('training_data.png',bbox_inches='tight')
|
231 |
+
plt.close()
|
232 |
+
|
233 |
+
if submit == 0:
|
234 |
+
text = "Press \"Start Regressing!\" if your are happy with the training data"
|
235 |
+
else:
|
236 |
+
text = "Press \"Prepare Training Data\" to change the training data"
|
237 |
+
if submit == 1:
|
238 |
+
if not osp.exists('train_log'):
|
239 |
+
os.mkdir('train_log')
|
240 |
+
for f in os.listdir('train_log'):
|
241 |
+
os.remove(osp.join('train_log', f))
|
242 |
+
regress(train_loader)
|
243 |
+
make_video()
|
244 |
+
output = 'train_log/{:05d}.png'.format(NUM_EPOCHS) if submit==1 else None
|
245 |
+
video = "movie.mp4" if submit==1 else None
|
246 |
+
return 'training_data.png', text, output, video
|
247 |
+
|
248 |
+
|
249 |
+
iface = gr.Interface(
|
250 |
+
fn=run,
|
251 |
+
inputs=[
|
252 |
+
gr.inputs.Slider(0, 100, default=2, step=1, label='Label percentage in [0, 2)'),
|
253 |
+
gr.inputs.Slider(0, 100, default=20, step=1, label='Label percentage in [2, 4)'),
|
254 |
+
gr.inputs.Slider(0, 100, default=100, step=1, label='Label percentage in [4, 6)'),
|
255 |
+
gr.inputs.Slider(0, 100, default=20, step=1, label='Label percentage in [6, 8)'),
|
256 |
+
gr.inputs.Slider(0, 100, default=2, step=1, label='Label percentage in [8, 10)'),
|
257 |
+
gr.inputs.Number(default=0, label='Random Seed', optional=False),
|
258 |
+
gr.inputs.Radio(['Prepare Training Data', 'Start Regressing!'],
|
259 |
+
type="index", default=None, label='Mode', optional=False),
|
260 |
+
],
|
261 |
+
outputs=[
|
262 |
+
gr.outputs.Image(type="file", label="Training data"),
|
263 |
+
gr.outputs.Textbox(type="auto", label='What\' s next?'),
|
264 |
+
gr.outputs.Image(type="file", label="Regression result"),
|
265 |
+
gr.outputs.Video(type='mp4', label='Training process')
|
266 |
+
],
|
267 |
+
live=True,
|
268 |
+
allow_flagging='never',
|
269 |
+
title="Balanced MSE for Imbalanced Visual Regression [CVPR 2022]",
|
270 |
+
description="Welcome to the demo for Balanced MSE ⚖. In this demo, we will work on a simple task: imbalanced <i>linear</i> regression. <br>"
|
271 |
+
"To get started, drag the sliders 👇👇 and create your label distribution!"
|
272 |
+
)
|
273 |
+
iface.launch()
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
matplotlib
|
2 |
+
torch
|
3 |
+
seaborn
|
4 |
+
pandas
|
5 |
+
ffmpeg-python
|