DrishtiSharma's picture
Update app.py
906e7f3
raw
history blame
2.45 kB
import gradio as gr
import librosa
from transformers import AutoFeatureExtractor, pipeline
def load_and_fix_data(input_file, model_sampling_rate):
speech, sample_rate = librosa.load(input_file)
if len(speech.shape) > 1:
speech = speech[:, 0] + speech[:, 1]
if sample_rate != model_sampling_rate:
speech = librosa.resample(speech, sample_rate, model_sampling_rate)
return speech
feature_extractor = AutoFeatureExtractor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-spanish")
sampling_rate = feature_extractor.sampling_rate
asr = pipeline("automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-spanish")
def predict_and_ctc_lm_decode(input_file):
speech = load_and_fix_data(input_file, sampling_rate)
transcribed_text = asr(speech, chunk_length_s=5, stride_length_s=1)["text"]
pipe1 = pipeline("sentiment-analysis", model = "finiteautomata/beto-sentiment-analysis")
sentiment = pipe1(transcribed_text)
sentiment={dic["label"]: dic["score"] for dic in sentiment}
pipe2 = pipeline("text-classification", model = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")
sexism_detection = pipe2(transcribed_text)
sexism_detection={dic["label"]: dic["score"] for dic in sexism_detection}
#sexism_detection = np.where(sexism_detection['label']== 0, 'No Sexista', 'Sexista')
pipe3 = pipeline("text-classification", model = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")
harassment_detection = pipe3(transcribed_text)
harassment_detection={dic["label"]: dic["score"] for dic in harassment_detection}
#harassment_detection = np.where(harassment_detection['label']== 0, 'No Harassment', 'Harassment')
return harassment_detection
#sexism_detection, harassment_detection
gr.Interface(
predict_and_ctc_lm_decode,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio")
],
#outputs=[gr.outputs.Label(num_top_classes=2),gr.outputs.Label(num_top_classes=2), gr.outputs.Label(num_top_classes=2)],
outputs=[gr.outputs.Label(num_top_classes=2)],
examples=[["audio1.wav"], ["audio2.wav"]],
title="Spanish-Audio-Transcription-based-Harassment-Detection",
description="This is a Gradio demo for Sentiment Analysis of Transcribed Spanish Audio",
layout="horizontal",
theme="huggingface",
).launch(enable_queue=True, cache_examples=True)