DrishtiSharma
commited on
Commit
•
3a603a5
1
Parent(s):
ceeab94
Update app.py
Browse files
app.py
CHANGED
@@ -25,6 +25,15 @@ def predict_and_ctc_lm_decode(input_file):
|
|
25 |
sentiment = pipe1(transcribed_text)[0]["label"]
|
26 |
return sentiment
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
gr.Interface(
|
30 |
predict_and_ctc_lm_decode,
|
@@ -35,7 +44,7 @@ gr.Interface(
|
|
35 |
outputs=[gr.outputs.Textbox(label="Predicción")],
|
36 |
examples=[["audio_test.wav"], ["sample_audio.wav"]],
|
37 |
title="Sentiment Analysis of Spanish Transcribed Audio",
|
38 |
-
description=
|
39 |
layout="horizontal",
|
40 |
theme="huggingface",
|
41 |
).launch(enable_queue=True, cache_examples=True)
|
|
|
25 |
sentiment = pipe1(transcribed_text)[0]["label"]
|
26 |
return sentiment
|
27 |
|
28 |
+
description = """ This is a Gradio demo for Sentiment Analysis of Transcribed Spanish Audio. First, we do Speech to Text, and then we perform sentiment analysis on the obtained transcription of the input audio.
|
29 |
+
|
30 |
+
Pre-trained model used for Spanish ASR: [jonatasgrosman/wav2vec2-xls-r-1b-spanish](https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-spanish)
|
31 |
+
|
32 |
+
|
33 |
+
Pre-trained model used for Sentiment Analysis of transcribed audio: [finiteautomata/beto-sentiment-analysis](https://huggingface.co/finiteautomata/beto-sentiment-analysis)
|
34 |
+
"""
|
35 |
+
|
36 |
+
"""
|
37 |
|
38 |
gr.Interface(
|
39 |
predict_and_ctc_lm_decode,
|
|
|
44 |
outputs=[gr.outputs.Textbox(label="Predicción")],
|
45 |
examples=[["audio_test.wav"], ["sample_audio.wav"]],
|
46 |
title="Sentiment Analysis of Spanish Transcribed Audio",
|
47 |
+
description=description,
|
48 |
layout="horizontal",
|
49 |
theme="huggingface",
|
50 |
).launch(enable_queue=True, cache_examples=True)
|