DiningSystem's picture
Duplicate from CVH-vn1210/make_hair
cea8877
import gradio as gr
from diffusers import StableDiffusionPipeline
import torch
import huggingface_hub as hf
import os
my_file = open("./style_name.txt", "r")
# reading the file
data = my_file.read()
# replacing end splitting the text
# when newline ('\n') is seen.
data_into_list = data.split("\n")[:-1]
my_file.close()
hf.login(token=os.environ['model_token'])
#remember to login with token before loading model
def text_to_hair(prompt, guidance_scale=8, num_inference_steps=30, styles=data_into_list, model_path ="DiningSystem/hair-model2"):
pipe = StableDiffusionPipeline.from_pretrained(os.environ['bmd'], torch_dtype=torch.float16, use_auth_token=True)
pipe.unet.load_attn_procs(model_path)
pipe.to("cuda")
image = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images[0]
#image.save(save_name) #comment if don't want to save image
return image #PIL format
demo = gr.Interface(fn=text_to_hair, inputs=["text", gr.Slider(5, 20, value=8, label="Guidance_scale", info="Choose between 5 and 20 to improve image's content"),
gr.Slider(20, 500, value=20, label="Num_infer_steps", info="Choose between 20 and 500 to improve image's resolution"),
gr.Dropdown(data_into_list, interactive=True, label="Some suggestion hairstyles", info="For your suggestion and reference!")],
outputs="image")
demo.launch()