Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -18,106 +18,46 @@ import nltk
|
|
18 |
nltk.download('stopwords')
|
19 |
nltk.download('punkt')
|
20 |
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
df = pd.DataFrame(data)
|
25 |
-
# shuffling all our data
|
26 |
-
df = df.sample(frac=1)
|
27 |
-
# reading only Message_body and label
|
28 |
-
df = df[['content','label']]
|
29 |
-
df['clean_msg'] = df['content'].apply(lambda x: x.lower())
|
30 |
-
# Remove punctuation
|
31 |
-
import string
|
32 |
def remove_punctuation(text):
|
33 |
punctuation_free = "".join([i for i in text if i not in string.punctuation])
|
34 |
return punctuation_free
|
35 |
-
|
36 |
-
df['clean_msg'] = df['clean_msg'].apply(lambda x: remove_punctuation(x))
|
37 |
-
# Tokenization
|
38 |
-
from nltk.tokenize import WhitespaceTokenizer
|
39 |
-
def tokenization(text):
|
40 |
-
tk = WhitespaceTokenizer()
|
41 |
-
return tk.tokenize(text)
|
42 |
-
|
43 |
-
df['tokenized_clean_msg'] = df['clean_msg'].apply(lambda x: tokenization(x))
|
44 |
-
# Remove stopwords
|
45 |
-
from nltk.corpus import stopwords
|
46 |
-
stop_words = set(stopwords.words('english'))
|
47 |
-
|
48 |
-
def remove_stopwords(text):
|
49 |
-
output = [word for word in text if word not in stopwords]
|
50 |
-
return output
|
51 |
-
|
52 |
-
df['cleaned_tokens'] = df['tokenized_clean_msg'].apply(lambda x: remove_stopwords(x))
|
53 |
-
# Count word frequencies
|
54 |
-
from collections import Counter
|
55 |
-
cnt = Counter()
|
56 |
-
for text in df['cleaned_tokens'].values:
|
57 |
-
for word in text:
|
58 |
-
cnt[word] += 1
|
59 |
-
|
60 |
-
# Select most common words
|
61 |
-
FREQWORDS = set([w for (w, wc) in cnt.most_common(10)])
|
62 |
-
|
63 |
-
# Remove frequent words
|
64 |
-
def remove_freqwords(text):
|
65 |
-
return [word for word in text if word not in FREQWORDS]
|
66 |
-
|
67 |
-
df['cleaned_tokens'] = df['cleaned_tokens'].apply(lambda x: remove_freqwords(x))
|
68 |
-
|
69 |
-
# Stemming
|
70 |
-
from nltk.stem.porter import PorterStemmer
|
71 |
-
porter_stemmer = PorterStemmer()
|
72 |
-
|
73 |
-
def stemming(text):
|
74 |
-
stem_text = [porter_stemmer.stem(word) for word in text]
|
75 |
-
return stem_text
|
76 |
-
|
77 |
-
df['cleaned_tokens'] = df['cleaned_tokens'].apply(lambda x: stemming(x))
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
from sklearn.feature_extraction.text import CountVectorizer
|
86 |
-
vectorizer = CountVectorizer()
|
87 |
-
X_train_vectorized = vectorizer.fit_transform(X_train)
|
88 |
-
X_test_vectorized = vectorizer.transform(X_test)
|
89 |
-
# Train the Multinomial Naive Bayes model
|
90 |
-
model = MultinomialNB()
|
91 |
-
model.fit(X_train_vectorized, y_train)
|
92 |
-
# Make predictions on the test set
|
93 |
-
y_pred = model.predict(X_test_vectorized)
|
94 |
def test_model(text):
|
95 |
# Convert text to lowercase
|
96 |
text = text.lower()
|
97 |
|
98 |
# Remove punctuation
|
99 |
-
text =remove_punctuation(text)
|
100 |
|
101 |
# Remove numbers
|
102 |
text = re.sub(r'\d+', '', text)
|
103 |
|
104 |
# Remove stopwords
|
105 |
-
|
106 |
tokens = word_tokenize(text)
|
107 |
-
filtered_text = [word for word in tokens if word not in
|
108 |
|
109 |
# Join the filtered tokens back into a string
|
110 |
preprocessed_text = ' '.join(filtered_text)
|
111 |
-
|
112 |
# Vectorize the preprocessed text
|
113 |
-
|
114 |
-
|
115 |
# Make prediction on the vectorized text
|
116 |
-
prediction = model.predict(
|
117 |
|
118 |
# Return the prediction
|
119 |
return prediction
|
|
|
120 |
# Create the Gradio interface
|
121 |
-
iface = gr.Interface(fn=test_model, inputs="text", outputs="text")
|
122 |
-
|
123 |
-
iface.launch()
|
|
|
18 |
nltk.download('stopwords')
|
19 |
nltk.download('punkt')
|
20 |
|
21 |
+
# Load the trained model
|
22 |
+
model = joblib.load('model.bin')
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def remove_punctuation(text):
|
25 |
punctuation_free = "".join([i for i in text if i not in string.punctuation])
|
26 |
return punctuation_free
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
def vectorize_text(texts):
|
29 |
+
vectorizer = CountVectorizer()
|
30 |
+
vectorizer.fit(texts)
|
31 |
+
text_vectorized = vectorizer.transform(texts)
|
32 |
+
return text_vectorized, vectorizer
|
33 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def test_model(text):
|
35 |
# Convert text to lowercase
|
36 |
text = text.lower()
|
37 |
|
38 |
# Remove punctuation
|
39 |
+
text = remove_punctuation(text)
|
40 |
|
41 |
# Remove numbers
|
42 |
text = re.sub(r'\d+', '', text)
|
43 |
|
44 |
# Remove stopwords
|
45 |
+
stopwords_set = set(stopwords.words('english'))
|
46 |
tokens = word_tokenize(text)
|
47 |
+
filtered_text = [word for word in tokens if word not in stopwords_set]
|
48 |
|
49 |
# Join the filtered tokens back into a string
|
50 |
preprocessed_text = ' '.join(filtered_text)
|
51 |
+
|
52 |
# Vectorize the preprocessed text
|
53 |
+
vectorize_texts = vectorize_text([preprocessed_text])
|
54 |
+
|
55 |
# Make prediction on the vectorized text
|
56 |
+
prediction = model.predict(vectorize_texts[0])[0]
|
57 |
|
58 |
# Return the prediction
|
59 |
return prediction
|
60 |
+
|
61 |
# Create the Gradio interface
|
62 |
+
iface = gr.Interface(fn=test_model, inputs="text", outputs="text", title="Text Classification")
|
63 |
+
iface.launch()
|
|