CSharpAI / app.py
RohitGuptaAI's picture
Update app.py
21537e2
raw
history blame
5.42 kB
from transformers.pipelines.image_segmentation import Predictions
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
import unidecode, re, unicodedata
from bs4 import BeautifulSoup
from urllib.request import urlopen
from urllib.parse import urlparse
from sklearn.metrics import confusion_matrix, accuracy_score
import torch.nn.functional as F
import gradio as gr
import torch
def check_by_url(txt_url):
#txt_url = "https://www.c-sharpcorner.com/article/how-to-add-multimedia-content-with-html/default.txt"
parsed_url = urlparse(txt_url)
url = f"{parsed_url.scheme}://{parsed_url.netloc}{parsed_url.path.rsplit('/', 1)[0]}/"
print(url)
new_data =[]
page = urlopen(url=url).read().decode("utf-8")
soup = BeautifulSoup(page, 'html.parser')
title = soup.find('title').get_text()
css_class_to_remove = "dp-highlighter" # Replace with the CSS class you want to remove
#Find <div> tags with the specified CSS class and remove their content
div_tags = soup.find_all(['code', 'pre'])
for div_tag in div_tags:
div_tag.clear()
div_tags = soup.find_all('div', class_=css_class_to_remove)
for div_tag in div_tags:
div_tag.clear()
# Fetch content of remaining tags
content_with_style = ""
p_tags_with_style = soup.find_all('p', style=True)
for p_tag in p_tags_with_style:
p_content = re.sub(r'\n', '', p_tag.get_text())
content_with_style += p_content
# Fetch content of <p> tags without style
content_without_style = ""
p_tags_without_style = soup.find_all('p', style=False)
for p_tag in p_tags_without_style:
p_content = re.sub(r'\n', '', p_tag.get_text())
content_without_style += p_content
# Replace Unicode characters in the content and remove duplicates
normalized_content_with_style = re.sub(r'\s+', ' ', content_with_style) # Remove extra spaces
normalized_content_with_style = normalized_content_with_style.replace('\r', '') # Replace '\r' characters
normalized_content_with_style = unicodedata.normalize('NFKD', normalized_content_with_style)
normalized_content_with_style = unidecode.unidecode(normalized_content_with_style)
normalized_content_without_style = re.sub(r'\s+', ' ', content_without_style) # Remove extra spaces
normalized_content_without_style = normalized_content_without_style.replace('\r', '') # Replace '\r' characters
normalized_content_without_style = unicodedata.normalize('NFKD', normalized_content_without_style)
normalized_content_without_style = unidecode.unidecode(normalized_content_without_style)
normalized_content_with_style += normalized_content_without_style
new_data = {"title": title, "content": normalized_content_with_style}
model = DistilBertForSequenceClassification.from_pretrained(".")
tokenizer = DistilBertTokenizer.from_pretrained(".")
test_encodings = tokenizer.encode_plus(
title,
truncation=True,
padding=True,
max_length=512,
return_tensors="pt"
)
model1=[]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
test_input_ids = test_encodings["input_ids"].to(device)
test_attention_mask = test_encodings["attention_mask"].to(device)
with torch.no_grad():
model1= model.to(device)
model1.eval()
outputs= model1( test_input_ids, attention_mask=test_attention_mask)
logits = outputs.logits
predicted_labels = torch.argmax(logits, dim=1)
probabilities = F.softmax(logits, dim=1)
confidence_score_title = torch.max(probabilities, dim=1).values.tolist()
predicted_labels = torch.argmax(outputs.logits, dim=1)
label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false
predicted_label_title = label_mapping[predicted_labels.item()]
test_encodings = tokenizer.encode_plus(
normalized_content_with_style,
truncation=True,
padding=True,
max_length=512,
return_tensors="pt"
)
model1=[]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
test_input_ids = test_encodings["input_ids"].to(device)
test_attention_mask = test_encodings["attention_mask"].to(device)
with torch.no_grad():
model1= model.to(device)
model1.eval()
outputs= model1( test_input_ids, attention_mask=test_attention_mask)
logits = outputs.logits
predicted_labels = torch.argmax(logits, dim=1)
probabilities = F.softmax(logits, dim=1)
confidence_scores_content = torch.max(probabilities, dim=1).values.tolist()
label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false
predicted_label_content = label_mapping[predicted_labels.item()]
return predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data
def predict_2( url):
predicted_label_title, confidence_score_title,predicted_label_content, confidence_scores_content, new_data = check_by_url(url)
return predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data
demo = gr.Interface(
fn=predict_2,
inputs= [
gr.inputs.Textbox(label="Enter URL"),
],
outputs= [
gr.outputs.Textbox(label="Title_prediction"),
gr.outputs.Textbox(label="Title_confidence_score"),
gr.outputs.Textbox(label="Content_prediction"),
gr.outputs.Textbox(label="content_confidence_score"),
gr.outputs.Textbox(label="new_data").style(show_copy_button=True)
],
)
demo.launch()