Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from transformers import pipeline | |
import logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
app = FastAPI() | |
# Load models once on startup | |
try: | |
ner_model = pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple") | |
sentiment_model = pipeline("sentiment-analysis", model="ProsusAI/finbert") | |
except Exception as e: | |
logger.error(f"Model loading failed: {e}") | |
ner_model = None | |
sentiment_model = None | |
class TextRequest(BaseModel): | |
text: str | |
def home(): | |
return {"message": "Crypto News API is alive!"} | |
def analyze_sentiment(req: TextRequest): | |
if not sentiment_model: | |
raise HTTPException(status_code=503, detail="Sentiment model not available") | |
text = req.text | |
if not text: | |
raise HTTPException(status_code=400, detail="Text cannot be empty") | |
result = sentiment_model(text[:512])[0] | |
return { | |
"label": result["label"], | |
"score": round(result["score"] * 100, 2) | |
} | |
def analyze_ner(req: TextRequest): | |
if not ner_model: | |
raise HTTPException(status_code=503, detail="NER model not available") | |
text = req.text | |
if not text: | |
raise HTTPException(status_code=400, detail="Text cannot be empty") | |
entities = ner_model(text[:512]) | |
# Filter relevant entities (ORG, PERSON, MISC, PRODUCT, GPE) | |
relevant = [e['word'] for e in entities if e['entity_group'] in ['ORG', 'PERSON', 'MISC', 'PRODUCT', 'GPE']] | |
# Remove duplicates and limit to 5 | |
unique_entities = list(dict.fromkeys(relevant))[:5] | |
return {"entities": unique_entities} | |