Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,48 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
import os
|
5 |
-
import torch
|
6 |
-
from gtts import gTTS
|
7 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# function part
|
10 |
# img2text
|
11 |
def img2text(image_path):
|
12 |
try:
|
13 |
-
#
|
14 |
-
|
15 |
-
import sentencepiece
|
16 |
-
except ImportError:
|
17 |
-
st.error("sentencepiece is not installed. Please install it with: pip install sentencepiece")
|
18 |
-
return "Error: sentencepiece not installed"
|
19 |
|
20 |
# Load the image-to-text model
|
21 |
image_to_text_model = pipeline("image-to-text", model="naver-clova-ix/donut-base")
|
@@ -33,13 +60,14 @@ def img2text(image_path):
|
|
33 |
# text2story
|
34 |
def text2story(text):
|
35 |
# For now, just return the extracted text as the story
|
36 |
-
# This function can be expanded later with more sophisticated story generation
|
37 |
story_text = f"Here's a story based on the text: {text}"
|
38 |
return story_text
|
39 |
|
40 |
-
# text2audio using Google Text-to-Speech
|
41 |
def text2audio(story_text):
|
42 |
try:
|
|
|
|
|
43 |
# Create a temporary file
|
44 |
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
|
45 |
temp_audio_path = temp_audio.name
|
@@ -62,56 +90,24 @@ st.set_page_config(page_title="Your Image to Audio Story",
|
|
62 |
st.header("Turn Your Image to Audio Story")
|
63 |
st.subheader("Using Donut model for text extraction")
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
if uploaded_file is not None:
|
68 |
-
# Save the uploaded file temporarily
|
69 |
-
bytes_data = uploaded_file.getvalue()
|
70 |
-
image_temp_path = os.path.join(tempfile.gettempdir(), uploaded_file.name)
|
71 |
-
with open(image_temp_path, "wb") as file:
|
72 |
-
file.write(bytes_data)
|
73 |
-
|
74 |
-
# Display the uploaded image
|
75 |
-
st.image(uploaded_file, caption="Uploaded Image",
|
76 |
-
use_column_width=True)
|
77 |
-
|
78 |
-
# Stage 1: Image to Text
|
79 |
-
with st.spinner('Processing img2text...'):
|
80 |
-
extracted_text = img2text(image_temp_path)
|
81 |
-
st.subheader("Extracted Text:")
|
82 |
-
st.write(extracted_text)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
story = text2story(extracted_text)
|
87 |
-
st.subheader("Generated Story:")
|
88 |
-
st.write(story)
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
with open(audio_file_path, "rb") as audio_file:
|
104 |
-
audio_bytes = audio_file.read()
|
105 |
-
st.audio(audio_bytes, format="audio/wav")
|
106 |
-
|
107 |
-
# Clean up the audio file after playing
|
108 |
-
try:
|
109 |
-
os.remove(audio_file_path)
|
110 |
-
except:
|
111 |
-
pass
|
112 |
-
else:
|
113 |
-
st.warning("Audio generation failed. Playing a placeholder audio.")
|
114 |
-
try:
|
115 |
-
st.audio("kids_playing_audio.wav")
|
116 |
-
except FileNotFoundError:
|
117 |
-
st.error("Placeholder audio file not found. Audio playback is unavailable.")
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from PIL import Image
|
3 |
import os
|
|
|
|
|
4 |
import tempfile
|
5 |
+
import subprocess
|
6 |
+
import sys
|
7 |
+
|
8 |
+
# Check for required dependencies and install if missing
|
9 |
+
def check_and_install_dependencies():
|
10 |
+
required_packages = {
|
11 |
+
"transformers": "transformers",
|
12 |
+
"sentencepiece": "sentencepiece",
|
13 |
+
"gtts": "gTTS"
|
14 |
+
}
|
15 |
+
|
16 |
+
missing_packages = []
|
17 |
+
for package, pip_name in required_packages.items():
|
18 |
+
try:
|
19 |
+
__import__(package)
|
20 |
+
except ImportError:
|
21 |
+
missing_packages.append((package, pip_name))
|
22 |
+
|
23 |
+
if missing_packages:
|
24 |
+
st.warning("Missing required dependencies. Please install them before continuing.")
|
25 |
+
for package, pip_name in missing_packages:
|
26 |
+
st.code(f"pip install {pip_name}", language="bash")
|
27 |
+
|
28 |
+
if st.button("Install Dependencies Automatically"):
|
29 |
+
with st.spinner("Installing dependencies..."):
|
30 |
+
for package, pip_name in missing_packages:
|
31 |
+
try:
|
32 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", pip_name])
|
33 |
+
st.success(f"Successfully installed {pip_name}")
|
34 |
+
except Exception as e:
|
35 |
+
st.error(f"Failed to install {pip_name}: {str(e)}")
|
36 |
+
st.info("Please restart the application after installing dependencies.")
|
37 |
+
return False
|
38 |
+
return True
|
39 |
|
40 |
# function part
|
41 |
# img2text
|
42 |
def img2text(image_path):
|
43 |
try:
|
44 |
+
# Import here to ensure dependencies are checked first
|
45 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Load the image-to-text model
|
48 |
image_to_text_model = pipeline("image-to-text", model="naver-clova-ix/donut-base")
|
|
|
60 |
# text2story
|
61 |
def text2story(text):
|
62 |
# For now, just return the extracted text as the story
|
|
|
63 |
story_text = f"Here's a story based on the text: {text}"
|
64 |
return story_text
|
65 |
|
66 |
+
# text2audio using Google Text-to-Speech
|
67 |
def text2audio(story_text):
|
68 |
try:
|
69 |
+
from gtts import gTTS
|
70 |
+
|
71 |
# Create a temporary file
|
72 |
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
|
73 |
temp_audio_path = temp_audio.name
|
|
|
90 |
st.header("Turn Your Image to Audio Story")
|
91 |
st.subheader("Using Donut model for text extraction")
|
92 |
|
93 |
+
# Check dependencies before proceeding
|
94 |
+
dependencies_ok = check_and_install_dependencies()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
if dependencies_ok:
|
97 |
+
uploaded_file = st.file_uploader("Select an Image...", type=['png', 'jpg', 'jpeg', 'gif', 'bmp', 'webp'])
|
|
|
|
|
|
|
98 |
|
99 |
+
if uploaded_file is not None:
|
100 |
+
# Save the uploaded file temporarily
|
101 |
+
bytes_data = uploaded_file.getvalue()
|
102 |
+
image_temp_path = os.path.join(tempfile.gettempdir(), uploaded_file.name)
|
103 |
+
with open(image_temp_path, "wb") as file:
|
104 |
+
file.write(bytes_data)
|
105 |
|
106 |
+
# Display the uploaded image
|
107 |
+
st.image(uploaded_file, caption="Uploaded Image",
|
108 |
+
use_column_width=True)
|
109 |
|
110 |
+
# Stage 1: Image to Text
|
111 |
+
with st.spinner('Processing img2text...'):
|
112 |
+
extracted_text = img2text(image_temp_path)
|
113 |
+
st.subheader("Extracted Text:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|