Data
Browse files- app.py +32 -64
- data/data_context.json +492 -0
- data/data_incr-order.json +282 -0
- data/data_method.json +492 -0
- data/models.json +30 -0
- src/display/utils.py +21 -15
app.py
CHANGED
@@ -1,102 +1,70 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
|
|
|
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
-
from huggingface_hub import snapshot_download
|
6 |
|
7 |
from src.about import (
|
8 |
CITATION_BUTTON_LABEL,
|
9 |
CITATION_BUTTON_TEXT,
|
10 |
EVALUATION_QUEUE_TEXT,
|
11 |
INTRODUCTION_TEXT,
|
12 |
-
LLM_BENCHMARKS_TEXT,
|
13 |
TITLE,
|
14 |
)
|
15 |
from src.display.css_html_js import custom_css
|
16 |
from src.display.utils import (
|
17 |
-
BENCHMARK_COLS,
|
18 |
-
COLS,
|
19 |
-
EVAL_COLS,
|
20 |
-
EVAL_TYPES,
|
21 |
AutoEvalColumn,
|
22 |
-
|
23 |
-
fields,
|
24 |
-
WeightType,
|
25 |
-
Precision
|
26 |
)
|
27 |
-
from src.envs import API,
|
28 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
29 |
-
from src.submission.submit import add_new_eval
|
30 |
|
31 |
|
32 |
def restart_space():
|
33 |
API.restart_space(repo_id=REPO_ID)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
print(EVAL_RESULTS_PATH)
|
45 |
-
snapshot_download(
|
46 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
47 |
-
)
|
48 |
-
except Exception:
|
49 |
-
restart_space()
|
50 |
|
|
|
|
|
|
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
(
|
55 |
-
finished_eval_queue_df,
|
56 |
-
running_eval_queue_df,
|
57 |
-
pending_eval_queue_df,
|
58 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
|
60 |
-
|
61 |
-
if dataframe is None or dataframe.empty:
|
62 |
-
raise ValueError("Leaderboard DataFrame is empty or None.")
|
63 |
-
return Leaderboard(
|
64 |
value=dataframe,
|
|
|
65 |
datatype=[c.type for c in fields(AutoEvalColumn)],
|
66 |
-
select_columns=SelectColumns(
|
67 |
-
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
68 |
-
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
69 |
-
label="Select Columns to Display:",
|
70 |
-
),
|
71 |
-
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
72 |
-
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
-
filter_columns=[
|
74 |
-
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
75 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
76 |
-
ColumnFilter(
|
77 |
-
AutoEvalColumn.params.name,
|
78 |
-
type="slider",
|
79 |
-
min=0.01,
|
80 |
-
max=150,
|
81 |
-
label="Select the number of parameters (B)",
|
82 |
-
),
|
83 |
-
ColumnFilter(
|
84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
85 |
-
),
|
86 |
-
],
|
87 |
-
bool_checkboxgroup_label="Hide models",
|
88 |
interactive=False,
|
89 |
)
|
90 |
|
91 |
-
|
92 |
demo = gr.Blocks(css=custom_css)
|
93 |
with demo:
|
94 |
gr.HTML(TITLE)
|
95 |
gr.HTML(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
96 |
|
97 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
-
with gr.TabItem("
|
99 |
-
leaderboard = init_leaderboard(
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
# with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
102 |
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
+
import json
|
4 |
+
from gradio_leaderboard import Leaderboard, SelectColumns
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
6 |
|
7 |
from src.about import (
|
8 |
CITATION_BUTTON_LABEL,
|
9 |
CITATION_BUTTON_TEXT,
|
10 |
EVALUATION_QUEUE_TEXT,
|
11 |
INTRODUCTION_TEXT,
|
|
|
12 |
TITLE,
|
13 |
)
|
14 |
from src.display.css_html_js import custom_css
|
15 |
from src.display.utils import (
|
|
|
|
|
|
|
|
|
16 |
AutoEvalColumn,
|
17 |
+
fields
|
|
|
|
|
|
|
18 |
)
|
19 |
+
from src.envs import API, REPO_ID
|
|
|
|
|
20 |
|
21 |
|
22 |
def restart_space():
|
23 |
API.restart_space(repo_id=REPO_ID)
|
24 |
|
25 |
+
def init_leaderboard(data_file):
|
26 |
+
with open(data_file, "r") as fp:
|
27 |
+
data = json.load(fp)
|
28 |
+
|
29 |
+
dataframe = pd.DataFrame()
|
30 |
+
for key, value in data.items():
|
31 |
+
col_df = pd.DataFrame(value)
|
32 |
+
col_df.rename(columns={"Pass_at_1": key}, inplace=True)
|
33 |
+
dataframe = col_df if dataframe.empty else dataframe.merge(col_df, on=['Context', 'Method', 'Model'], how='outer')
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
dataframe['Score'] = dataframe.drop(columns=['Context', 'Method', 'Model']).sum(axis=1) / 5
|
36 |
+
numeric_cols = dataframe.select_dtypes(include='number').columns
|
37 |
+
dataframe[numeric_cols] = dataframe[numeric_cols].apply(lambda x: x * 100).round(1)
|
38 |
|
39 |
+
cols = list(dataframe.columns)
|
40 |
+
cols.remove('Score')
|
41 |
+
cols.insert(3, 'Score')
|
42 |
+
dataframe = dataframe[cols]
|
43 |
+
cols.insert(3, cols.pop(cols.index('Score')))
|
44 |
|
45 |
+
dataframe = dataframe.sort_values(by='Score', ascending=False)
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
return gr.components.DataFrame(
|
|
|
|
|
|
|
48 |
value=dataframe,
|
49 |
+
headers=[c.name for c in fields(AutoEvalColumn) if not c.hidden],
|
50 |
datatype=[c.type for c in fields(AutoEvalColumn)],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
interactive=False,
|
52 |
)
|
53 |
|
|
|
54 |
demo = gr.Blocks(css=custom_css)
|
55 |
with demo:
|
56 |
gr.HTML(TITLE)
|
57 |
gr.HTML(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
58 |
|
59 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
60 |
+
with gr.TabItem("[Method] Evaluation", elem_id="llm-benchmark-tab-table", id=0):
|
61 |
+
leaderboard = init_leaderboard("./data/data_method.json")
|
62 |
+
|
63 |
+
with gr.TabItem("[Context] Evaluation", elem_id="llm-benchmark-tab-table", id=1):
|
64 |
+
leaderboard = init_leaderboard("./data/data_context.json")
|
65 |
+
|
66 |
+
with gr.TabItem("[Incremental] Evaluation", elem_id="llm-benchmark-tab-table", id=2):
|
67 |
+
leaderboard = init_leaderboard("./data/data_incr-order.json")
|
68 |
|
69 |
# with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
70 |
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
data/data_context.json
ADDED
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"completion": [
|
3 |
+
{
|
4 |
+
"Context": "selective",
|
5 |
+
"Method": "holistic",
|
6 |
+
"Model": "gpt-4o-2024-05-13",
|
7 |
+
"Pass_at_1": 1.0
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"Context": "maximum",
|
11 |
+
"Method": "holistic",
|
12 |
+
"Model": "deepseek-coder-33b-instruct",
|
13 |
+
"Pass_at_1": 0.9714285714
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"Context": "maximum",
|
17 |
+
"Method": "holistic",
|
18 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
19 |
+
"Pass_at_1": 0.945
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"Context": "selective",
|
23 |
+
"Method": "holistic",
|
24 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
25 |
+
"Pass_at_1": 0.9378571429
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"Context": "selective",
|
29 |
+
"Method": "holistic",
|
30 |
+
"Model": "deepseek-coder-33b-instruct",
|
31 |
+
"Pass_at_1": 0.9357142857
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"Context": "maximum",
|
35 |
+
"Method": "holistic",
|
36 |
+
"Model": "gpt-3.5-turbo-1106",
|
37 |
+
"Pass_at_1": 0.9328571429
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"Context": "selective",
|
41 |
+
"Method": "holistic",
|
42 |
+
"Model": "gpt-3.5-turbo-1106",
|
43 |
+
"Pass_at_1": 0.9214285714
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"Context": "minimum",
|
47 |
+
"Method": "holistic",
|
48 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
49 |
+
"Pass_at_1": 0.9007142857
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"Context": "maximum",
|
53 |
+
"Method": "holistic",
|
54 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
55 |
+
"Pass_at_1": 0.8907142857
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"Context": "minimum",
|
59 |
+
"Method": "holistic",
|
60 |
+
"Model": "deepseek-coder-33b-instruct",
|
61 |
+
"Pass_at_1": 0.8828571429
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"Context": "minimum",
|
65 |
+
"Method": "holistic",
|
66 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
67 |
+
"Pass_at_1": 0.8728571429
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"Context": "minimum",
|
71 |
+
"Method": "holistic",
|
72 |
+
"Model": "gpt-3.5-turbo-1106",
|
73 |
+
"Pass_at_1": 0.8578571429
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"Context": "selective",
|
77 |
+
"Method": "holistic",
|
78 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
79 |
+
"Pass_at_1": 0.845
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"Context": "selective",
|
83 |
+
"Method": "holistic",
|
84 |
+
"Model": "WizardCoder-15B-V1.0",
|
85 |
+
"Pass_at_1": 0.7964285714
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"Context": "minimum",
|
89 |
+
"Method": "holistic",
|
90 |
+
"Model": "WizardCoder-15B-V1.0",
|
91 |
+
"Pass_at_1": 0.7935714286
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"Context": "maximum",
|
95 |
+
"Method": "holistic",
|
96 |
+
"Model": "WizardCoder-15B-V1.0",
|
97 |
+
"Pass_at_1": 0.7192857143
|
98 |
+
}
|
99 |
+
],
|
100 |
+
"compilation_class_wise": [
|
101 |
+
{
|
102 |
+
"Context": "selective",
|
103 |
+
"Method": "holistic",
|
104 |
+
"Model": "gpt-3.5-turbo-1106",
|
105 |
+
"Pass_at_1": 0.7942857143
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"Context": "selective",
|
109 |
+
"Method": "holistic",
|
110 |
+
"Model": "deepseek-coder-33b-instruct",
|
111 |
+
"Pass_at_1": 0.7414285714
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"Context": "maximum",
|
115 |
+
"Method": "holistic",
|
116 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
117 |
+
"Pass_at_1": 0.7385714286
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"Context": "maximum",
|
121 |
+
"Method": "holistic",
|
122 |
+
"Model": "deepseek-coder-33b-instruct",
|
123 |
+
"Pass_at_1": 0.7314285714
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"Context": "selective",
|
127 |
+
"Method": "holistic",
|
128 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
129 |
+
"Pass_at_1": 0.7171428571
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"Context": "selective",
|
133 |
+
"Method": "holistic",
|
134 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
135 |
+
"Pass_at_1": 0.6978571429
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"Context": "selective",
|
139 |
+
"Method": "holistic",
|
140 |
+
"Model": "gpt-4o-2024-05-13",
|
141 |
+
"Pass_at_1": 0.6607142857
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"Context": "maximum",
|
145 |
+
"Method": "holistic",
|
146 |
+
"Model": "gpt-3.5-turbo-1106",
|
147 |
+
"Pass_at_1": 0.6592857143
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"Context": "maximum",
|
151 |
+
"Method": "holistic",
|
152 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
153 |
+
"Pass_at_1": 0.6414285714
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"Context": "selective",
|
157 |
+
"Method": "holistic",
|
158 |
+
"Model": "WizardCoder-15B-V1.0",
|
159 |
+
"Pass_at_1": 0.58
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"Context": "maximum",
|
163 |
+
"Method": "holistic",
|
164 |
+
"Model": "WizardCoder-15B-V1.0",
|
165 |
+
"Pass_at_1": 0.4814285714
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"Context": "minimum",
|
169 |
+
"Method": "holistic",
|
170 |
+
"Model": "gpt-3.5-turbo-1106",
|
171 |
+
"Pass_at_1": 0.45
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"Context": "minimum",
|
175 |
+
"Method": "holistic",
|
176 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
177 |
+
"Pass_at_1": 0.39
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"Context": "minimum",
|
181 |
+
"Method": "holistic",
|
182 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
183 |
+
"Pass_at_1": 0.3692857143
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"Context": "minimum",
|
187 |
+
"Method": "holistic",
|
188 |
+
"Model": "deepseek-coder-33b-instruct",
|
189 |
+
"Pass_at_1": 0.3457142857
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"Context": "minimum",
|
193 |
+
"Method": "holistic",
|
194 |
+
"Model": "WizardCoder-15B-V1.0",
|
195 |
+
"Pass_at_1": 0.215
|
196 |
+
}
|
197 |
+
],
|
198 |
+
"compilation_test_wise": [
|
199 |
+
{
|
200 |
+
"Context": "selective",
|
201 |
+
"Method": "holistic",
|
202 |
+
"Model": "gpt-4o-2024-05-13",
|
203 |
+
"Pass_at_1": 0.5035714286
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"Context": "selective",
|
207 |
+
"Method": "holistic",
|
208 |
+
"Model": "deepseek-coder-33b-instruct",
|
209 |
+
"Pass_at_1": 0.4202826585
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"Context": "selective",
|
213 |
+
"Method": "holistic",
|
214 |
+
"Model": "gpt-3.5-turbo-1106",
|
215 |
+
"Pass_at_1": 0.3443277311
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"Context": "maximum",
|
219 |
+
"Method": "holistic",
|
220 |
+
"Model": "deepseek-coder-33b-instruct",
|
221 |
+
"Pass_at_1": 0.3405987395
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"Context": "maximum",
|
225 |
+
"Method": "holistic",
|
226 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
227 |
+
"Pass_at_1": 0.3387079832
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"Context": "selective",
|
231 |
+
"Method": "holistic",
|
232 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
233 |
+
"Pass_at_1": 0.3183823529
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"Context": "selective",
|
237 |
+
"Method": "holistic",
|
238 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
239 |
+
"Pass_at_1": 0.3121848739
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"Context": "maximum",
|
243 |
+
"Method": "holistic",
|
244 |
+
"Model": "gpt-3.5-turbo-1106",
|
245 |
+
"Pass_at_1": 0.2858193277
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"Context": "maximum",
|
249 |
+
"Method": "holistic",
|
250 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
251 |
+
"Pass_at_1": 0.2283088235
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"Context": "selective",
|
255 |
+
"Method": "holistic",
|
256 |
+
"Model": "WizardCoder-15B-V1.0",
|
257 |
+
"Pass_at_1": 0.2240546218
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"Context": "maximum",
|
261 |
+
"Method": "holistic",
|
262 |
+
"Model": "WizardCoder-15B-V1.0",
|
263 |
+
"Pass_at_1": 0.1466911765
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"Context": "minimum",
|
267 |
+
"Method": "holistic",
|
268 |
+
"Model": "deepseek-coder-33b-instruct",
|
269 |
+
"Pass_at_1": 0.1128676471
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"Context": "minimum",
|
273 |
+
"Method": "holistic",
|
274 |
+
"Model": "gpt-3.5-turbo-1106",
|
275 |
+
"Pass_at_1": 0.03125
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"Context": "minimum",
|
279 |
+
"Method": "holistic",
|
280 |
+
"Model": "WizardCoder-15B-V1.0",
|
281 |
+
"Pass_at_1": 0.0147058824
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"Context": "minimum",
|
285 |
+
"Method": "holistic",
|
286 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
287 |
+
"Pass_at_1": 0.0125
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"Context": "minimum",
|
291 |
+
"Method": "holistic",
|
292 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
293 |
+
"Pass_at_1": 0.0
|
294 |
+
}
|
295 |
+
],
|
296 |
+
"pass_class_wise": [
|
297 |
+
{
|
298 |
+
"Context": "selective",
|
299 |
+
"Method": "holistic",
|
300 |
+
"Model": "gpt-3.5-turbo-1106",
|
301 |
+
"Pass_at_1": 0.7832360347
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"Context": "selective",
|
305 |
+
"Method": "holistic",
|
306 |
+
"Model": "deepseek-coder-33b-instruct",
|
307 |
+
"Pass_at_1": 0.723699056
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"Context": "maximum",
|
311 |
+
"Method": "holistic",
|
312 |
+
"Model": "deepseek-coder-33b-instruct",
|
313 |
+
"Pass_at_1": 0.715291943
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"Context": "maximum",
|
317 |
+
"Method": "holistic",
|
318 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
319 |
+
"Pass_at_1": 0.7033228696
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"Context": "selective",
|
323 |
+
"Method": "holistic",
|
324 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
325 |
+
"Pass_at_1": 0.6855203826
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"Context": "selective",
|
329 |
+
"Method": "holistic",
|
330 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
331 |
+
"Pass_at_1": 0.6808480861
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"Context": "selective",
|
335 |
+
"Method": "holistic",
|
336 |
+
"Model": "gpt-4o-2024-05-13",
|
337 |
+
"Pass_at_1": 0.6545897285
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"Context": "maximum",
|
341 |
+
"Method": "holistic",
|
342 |
+
"Model": "gpt-3.5-turbo-1106",
|
343 |
+
"Pass_at_1": 0.6417690022
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"Context": "maximum",
|
347 |
+
"Method": "holistic",
|
348 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
349 |
+
"Pass_at_1": 0.6293667264
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"Context": "selective",
|
353 |
+
"Method": "holistic",
|
354 |
+
"Model": "WizardCoder-15B-V1.0",
|
355 |
+
"Pass_at_1": 0.5674101922
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"Context": "maximum",
|
359 |
+
"Method": "holistic",
|
360 |
+
"Model": "WizardCoder-15B-V1.0",
|
361 |
+
"Pass_at_1": 0.4741970721
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"Context": "minimum",
|
365 |
+
"Method": "holistic",
|
366 |
+
"Model": "gpt-3.5-turbo-1106",
|
367 |
+
"Pass_at_1": 0.4489821662
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"Context": "minimum",
|
371 |
+
"Method": "holistic",
|
372 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
373 |
+
"Pass_at_1": 0.3864123669
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"Context": "minimum",
|
377 |
+
"Method": "holistic",
|
378 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
379 |
+
"Pass_at_1": 0.3599216366
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"Context": "minimum",
|
383 |
+
"Method": "holistic",
|
384 |
+
"Model": "deepseek-coder-33b-instruct",
|
385 |
+
"Pass_at_1": 0.3272885064
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"Context": "minimum",
|
389 |
+
"Method": "holistic",
|
390 |
+
"Model": "WizardCoder-15B-V1.0",
|
391 |
+
"Pass_at_1": 0.2139054163
|
392 |
+
}
|
393 |
+
],
|
394 |
+
"pass_test_wise": [
|
395 |
+
{
|
396 |
+
"Context": "selective",
|
397 |
+
"Method": "holistic",
|
398 |
+
"Model": "gpt-4o-2024-05-13",
|
399 |
+
"Pass_at_1": 0.3438179726
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"Context": "selective",
|
403 |
+
"Method": "holistic",
|
404 |
+
"Model": "deepseek-coder-33b-instruct",
|
405 |
+
"Pass_at_1": 0.3047552867
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"Context": "maximum",
|
409 |
+
"Method": "holistic",
|
410 |
+
"Model": "deepseek-coder-33b-instruct",
|
411 |
+
"Pass_at_1": 0.3032497787
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"Context": "selective",
|
415 |
+
"Method": "holistic",
|
416 |
+
"Model": "gpt-3.5-turbo-1106",
|
417 |
+
"Pass_at_1": 0.2941156144
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"Context": "selective",
|
421 |
+
"Method": "holistic",
|
422 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
423 |
+
"Pass_at_1": 0.2544265255
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"Context": "maximum",
|
427 |
+
"Method": "holistic",
|
428 |
+
"Model": "gpt-3.5-turbo-1106",
|
429 |
+
"Pass_at_1": 0.2393000344
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"Context": "selective",
|
433 |
+
"Method": "holistic",
|
434 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
435 |
+
"Pass_at_1": 0.2028454735
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"Context": "maximum",
|
439 |
+
"Method": "holistic",
|
440 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
441 |
+
"Pass_at_1": 0.1966660863
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"Context": "maximum",
|
445 |
+
"Method": "holistic",
|
446 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
447 |
+
"Pass_at_1": 0.1877858469
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"Context": "selective",
|
451 |
+
"Method": "holistic",
|
452 |
+
"Model": "WizardCoder-15B-V1.0",
|
453 |
+
"Pass_at_1": 0.1669267449
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"Context": "maximum",
|
457 |
+
"Method": "holistic",
|
458 |
+
"Model": "WizardCoder-15B-V1.0",
|
459 |
+
"Pass_at_1": 0.1370849195
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"Context": "minimum",
|
463 |
+
"Method": "holistic",
|
464 |
+
"Model": "deepseek-coder-33b-instruct",
|
465 |
+
"Pass_at_1": 0.1123372221
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"Context": "minimum",
|
469 |
+
"Method": "holistic",
|
470 |
+
"Model": "gpt-3.5-turbo-1106",
|
471 |
+
"Pass_at_1": 0.03125
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"Context": "minimum",
|
475 |
+
"Method": "holistic",
|
476 |
+
"Model": "WizardCoder-15B-V1.0",
|
477 |
+
"Pass_at_1": 0.0147058824
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"Context": "minimum",
|
481 |
+
"Method": "holistic",
|
482 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
483 |
+
"Pass_at_1": 0.0125
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"Context": "minimum",
|
487 |
+
"Method": "holistic",
|
488 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
489 |
+
"Pass_at_1": 0.0
|
490 |
+
}
|
491 |
+
]
|
492 |
+
}
|
data/data_incr-order.json
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"completion": [
|
3 |
+
{
|
4 |
+
"Context": "selective",
|
5 |
+
"Method": "incremental",
|
6 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
7 |
+
"Pass_at_1": 0.8642857143
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"Context": "selective",
|
11 |
+
"Method": "incremental_random",
|
12 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
13 |
+
"Pass_at_1": 0.8514285714
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"Context": "selective",
|
17 |
+
"Method": "incremental",
|
18 |
+
"Model": "gpt-3.5-turbo-1106",
|
19 |
+
"Pass_at_1": 0.8392857143
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"Context": "selective",
|
23 |
+
"Method": "incremental_rev",
|
24 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
25 |
+
"Pass_at_1": 0.8257142857
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"Context": "selective",
|
29 |
+
"Method": "incremental_random",
|
30 |
+
"Model": "gpt-3.5-turbo-1106",
|
31 |
+
"Pass_at_1": 0.8135714286
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"Context": "selective",
|
35 |
+
"Method": "incremental_rev",
|
36 |
+
"Model": "gpt-3.5-turbo-1106",
|
37 |
+
"Pass_at_1": 0.8121428571
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"Context": "selective",
|
41 |
+
"Method": "incremental",
|
42 |
+
"Model": "deepseek-coder-33b-instruct",
|
43 |
+
"Pass_at_1": 0.7485714286
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"Context": "selective",
|
47 |
+
"Method": "incremental",
|
48 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
49 |
+
"Pass_at_1": 0.5992857143
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"Context": "selective",
|
53 |
+
"Method": "incremental",
|
54 |
+
"Model": "WizardCoder-15B-V1.0",
|
55 |
+
"Pass_at_1": 0.5057142857
|
56 |
+
}
|
57 |
+
],
|
58 |
+
"compilation_class_wise": [
|
59 |
+
{
|
60 |
+
"Context": "selective",
|
61 |
+
"Method": "incremental_random",
|
62 |
+
"Model": "gpt-3.5-turbo-1106",
|
63 |
+
"Pass_at_1": 0.7285714286
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"Context": "selective",
|
67 |
+
"Method": "incremental",
|
68 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
69 |
+
"Pass_at_1": 0.725
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"Context": "selective",
|
73 |
+
"Method": "incremental",
|
74 |
+
"Model": "gpt-3.5-turbo-1106",
|
75 |
+
"Pass_at_1": 0.7
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"Context": "selective",
|
79 |
+
"Method": "incremental_random",
|
80 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
81 |
+
"Pass_at_1": 0.695
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"Context": "selective",
|
85 |
+
"Method": "incremental_rev",
|
86 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
87 |
+
"Pass_at_1": 0.6864285714
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"Context": "selective",
|
91 |
+
"Method": "incremental_rev",
|
92 |
+
"Model": "gpt-3.5-turbo-1106",
|
93 |
+
"Pass_at_1": 0.6642857143
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"Context": "selective",
|
97 |
+
"Method": "incremental",
|
98 |
+
"Model": "deepseek-coder-33b-instruct",
|
99 |
+
"Pass_at_1": 0.5778571429
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"Context": "selective",
|
103 |
+
"Method": "incremental",
|
104 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
105 |
+
"Pass_at_1": 0.5021428571
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"Context": "selective",
|
109 |
+
"Method": "incremental",
|
110 |
+
"Model": "WizardCoder-15B-V1.0",
|
111 |
+
"Pass_at_1": 0.3507142857
|
112 |
+
}
|
113 |
+
],
|
114 |
+
"compilation_test_wise": [
|
115 |
+
{
|
116 |
+
"Context": "selective",
|
117 |
+
"Method": "incremental",
|
118 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
119 |
+
"Pass_at_1": 0.2621848739
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"Context": "selective",
|
123 |
+
"Method": "incremental_rev",
|
124 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
125 |
+
"Pass_at_1": 0.2589381207
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"Context": "selective",
|
129 |
+
"Method": "incremental_random",
|
130 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
131 |
+
"Pass_at_1": 0.2505252101
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"Context": "selective",
|
135 |
+
"Method": "incremental_rev",
|
136 |
+
"Model": "gpt-3.5-turbo-1106",
|
137 |
+
"Pass_at_1": 0.2421457219
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"Context": "selective",
|
141 |
+
"Method": "incremental_random",
|
142 |
+
"Model": "gpt-3.5-turbo-1106",
|
143 |
+
"Pass_at_1": 0.1824818564
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"Context": "selective",
|
147 |
+
"Method": "incremental",
|
148 |
+
"Model": "gpt-3.5-turbo-1106",
|
149 |
+
"Pass_at_1": 0.0955357143
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"Context": "selective",
|
153 |
+
"Method": "incremental",
|
154 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
155 |
+
"Pass_at_1": 0.0701680672
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"Context": "selective",
|
159 |
+
"Method": "incremental",
|
160 |
+
"Model": "deepseek-coder-33b-instruct",
|
161 |
+
"Pass_at_1": 0.0352941176
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"Context": "selective",
|
165 |
+
"Method": "incremental",
|
166 |
+
"Model": "WizardCoder-15B-V1.0",
|
167 |
+
"Pass_at_1": 0.0
|
168 |
+
}
|
169 |
+
],
|
170 |
+
"pass_class_wise": [
|
171 |
+
{
|
172 |
+
"Context": "selective",
|
173 |
+
"Method": "incremental_random",
|
174 |
+
"Model": "gpt-3.5-turbo-1106",
|
175 |
+
"Pass_at_1": 0.7209670092
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"Context": "selective",
|
179 |
+
"Method": "incremental",
|
180 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
181 |
+
"Pass_at_1": 0.7036481325
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"Context": "selective",
|
185 |
+
"Method": "incremental",
|
186 |
+
"Model": "gpt-3.5-turbo-1106",
|
187 |
+
"Pass_at_1": 0.6846699639
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"Context": "selective",
|
191 |
+
"Method": "incremental_random",
|
192 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
193 |
+
"Pass_at_1": 0.6816620162
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"Context": "selective",
|
197 |
+
"Method": "incremental_rev",
|
198 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
199 |
+
"Pass_at_1": 0.6650646981
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"Context": "selective",
|
203 |
+
"Method": "incremental_rev",
|
204 |
+
"Model": "gpt-3.5-turbo-1106",
|
205 |
+
"Pass_at_1": 0.6537268945
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"Context": "selective",
|
209 |
+
"Method": "incremental",
|
210 |
+
"Model": "deepseek-coder-33b-instruct",
|
211 |
+
"Pass_at_1": 0.5603969625
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"Context": "selective",
|
215 |
+
"Method": "incremental",
|
216 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
217 |
+
"Pass_at_1": 0.4878321662
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"Context": "selective",
|
221 |
+
"Method": "incremental",
|
222 |
+
"Model": "WizardCoder-15B-V1.0",
|
223 |
+
"Pass_at_1": 0.3468474087
|
224 |
+
}
|
225 |
+
],
|
226 |
+
"pass_test_wise": [
|
227 |
+
{
|
228 |
+
"Context": "selective",
|
229 |
+
"Method": "incremental_random",
|
230 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
231 |
+
"Pass_at_1": 0.2107590067
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"Context": "selective",
|
235 |
+
"Method": "incremental_rev",
|
236 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
237 |
+
"Pass_at_1": 0.2085373337
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"Context": "selective",
|
241 |
+
"Method": "incremental",
|
242 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
243 |
+
"Pass_at_1": 0.1967821219
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"Context": "selective",
|
247 |
+
"Method": "incremental_rev",
|
248 |
+
"Model": "gpt-3.5-turbo-1106",
|
249 |
+
"Pass_at_1": 0.1865232907
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"Context": "selective",
|
253 |
+
"Method": "incremental_random",
|
254 |
+
"Model": "gpt-3.5-turbo-1106",
|
255 |
+
"Pass_at_1": 0.1179619378
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"Context": "selective",
|
259 |
+
"Method": "incremental",
|
260 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
261 |
+
"Pass_at_1": 0.061012122
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"Context": "selective",
|
265 |
+
"Method": "incremental",
|
266 |
+
"Model": "gpt-3.5-turbo-1106",
|
267 |
+
"Pass_at_1": 0.0514928193
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"Context": "selective",
|
271 |
+
"Method": "incremental",
|
272 |
+
"Model": "deepseek-coder-33b-instruct",
|
273 |
+
"Pass_at_1": 0.0350620781
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"Context": "selective",
|
277 |
+
"Method": "incremental",
|
278 |
+
"Model": "WizardCoder-15B-V1.0",
|
279 |
+
"Pass_at_1": 0.0
|
280 |
+
}
|
281 |
+
]
|
282 |
+
}
|
data/data_method.json
ADDED
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"completion": [
|
3 |
+
{
|
4 |
+
"Context": "selective",
|
5 |
+
"Method": "holistic",
|
6 |
+
"Model": "gpt-4o-2024-05-13",
|
7 |
+
"Pass_at_1": 1.0
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"Context": "selective",
|
11 |
+
"Method": "holistic",
|
12 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
13 |
+
"Pass_at_1": 0.9378571429
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"Context": "selective",
|
17 |
+
"Method": "holistic",
|
18 |
+
"Model": "deepseek-coder-33b-instruct",
|
19 |
+
"Pass_at_1": 0.9357142857
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"Context": "selective",
|
23 |
+
"Method": "holistic",
|
24 |
+
"Model": "gpt-3.5-turbo-1106",
|
25 |
+
"Pass_at_1": 0.9214285714
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"Context": "selective",
|
29 |
+
"Method": "incremental",
|
30 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
31 |
+
"Pass_at_1": 0.8642857143
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"Context": "selective",
|
35 |
+
"Method": "independent",
|
36 |
+
"Model": "gpt-3.5-turbo-1106",
|
37 |
+
"Pass_at_1": 0.8535714286
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"Context": "selective",
|
41 |
+
"Method": "independent",
|
42 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
43 |
+
"Pass_at_1": 0.8471428571
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"Context": "selective",
|
47 |
+
"Method": "holistic",
|
48 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
49 |
+
"Pass_at_1": 0.845
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"Context": "selective",
|
53 |
+
"Method": "incremental",
|
54 |
+
"Model": "gpt-3.5-turbo-1106",
|
55 |
+
"Pass_at_1": 0.8392857143
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"Context": "selective",
|
59 |
+
"Method": "independent",
|
60 |
+
"Model": "deepseek-coder-33b-instruct",
|
61 |
+
"Pass_at_1": 0.8192857143
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"Context": "selective",
|
65 |
+
"Method": "holistic",
|
66 |
+
"Model": "WizardCoder-15B-V1.0",
|
67 |
+
"Pass_at_1": 0.7964285714
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"Context": "selective",
|
71 |
+
"Method": "incremental",
|
72 |
+
"Model": "deepseek-coder-33b-instruct",
|
73 |
+
"Pass_at_1": 0.7485714286
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"Context": "selective",
|
77 |
+
"Method": "independent",
|
78 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
79 |
+
"Pass_at_1": 0.6378571429
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"Context": "selective",
|
83 |
+
"Method": "incremental",
|
84 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
85 |
+
"Pass_at_1": 0.5992857143
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"Context": "selective",
|
89 |
+
"Method": "independent",
|
90 |
+
"Model": "WizardCoder-15B-V1.0",
|
91 |
+
"Pass_at_1": 0.5971428571
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"Context": "selective",
|
95 |
+
"Method": "incremental",
|
96 |
+
"Model": "WizardCoder-15B-V1.0",
|
97 |
+
"Pass_at_1": 0.5057142857
|
98 |
+
}
|
99 |
+
],
|
100 |
+
"compilation_class_wise": [
|
101 |
+
{
|
102 |
+
"Context": "selective",
|
103 |
+
"Method": "holistic",
|
104 |
+
"Model": "gpt-3.5-turbo-1106",
|
105 |
+
"Pass_at_1": 0.7942857143
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"Context": "selective",
|
109 |
+
"Method": "holistic",
|
110 |
+
"Model": "deepseek-coder-33b-instruct",
|
111 |
+
"Pass_at_1": 0.7414285714
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"Context": "selective",
|
115 |
+
"Method": "incremental",
|
116 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
117 |
+
"Pass_at_1": 0.725
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"Context": "selective",
|
121 |
+
"Method": "holistic",
|
122 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
123 |
+
"Pass_at_1": 0.7171428571
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"Context": "selective",
|
127 |
+
"Method": "incremental",
|
128 |
+
"Model": "gpt-3.5-turbo-1106",
|
129 |
+
"Pass_at_1": 0.7
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"Context": "selective",
|
133 |
+
"Method": "holistic",
|
134 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
135 |
+
"Pass_at_1": 0.6978571429
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"Context": "selective",
|
139 |
+
"Method": "independent",
|
140 |
+
"Model": "gpt-3.5-turbo-1106",
|
141 |
+
"Pass_at_1": 0.6828571429
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"Context": "selective",
|
145 |
+
"Method": "independent",
|
146 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
147 |
+
"Pass_at_1": 0.6814285714
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"Context": "selective",
|
151 |
+
"Method": "independent",
|
152 |
+
"Model": "deepseek-coder-33b-instruct",
|
153 |
+
"Pass_at_1": 0.6764285714
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"Context": "selective",
|
157 |
+
"Method": "holistic",
|
158 |
+
"Model": "gpt-4o-2024-05-13",
|
159 |
+
"Pass_at_1": 0.6607142857
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"Context": "selective",
|
163 |
+
"Method": "holistic",
|
164 |
+
"Model": "WizardCoder-15B-V1.0",
|
165 |
+
"Pass_at_1": 0.58
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"Context": "selective",
|
169 |
+
"Method": "incremental",
|
170 |
+
"Model": "deepseek-coder-33b-instruct",
|
171 |
+
"Pass_at_1": 0.5778571429
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"Context": "selective",
|
175 |
+
"Method": "incremental",
|
176 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
177 |
+
"Pass_at_1": 0.5021428571
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"Context": "selective",
|
181 |
+
"Method": "independent",
|
182 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
183 |
+
"Pass_at_1": 0.4985714286
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"Context": "selective",
|
187 |
+
"Method": "independent",
|
188 |
+
"Model": "WizardCoder-15B-V1.0",
|
189 |
+
"Pass_at_1": 0.4335714286
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"Context": "selective",
|
193 |
+
"Method": "incremental",
|
194 |
+
"Model": "WizardCoder-15B-V1.0",
|
195 |
+
"Pass_at_1": 0.3507142857
|
196 |
+
}
|
197 |
+
],
|
198 |
+
"compilation_test_wise": [
|
199 |
+
{
|
200 |
+
"Context": "selective",
|
201 |
+
"Method": "holistic",
|
202 |
+
"Model": "gpt-4o-2024-05-13",
|
203 |
+
"Pass_at_1": 0.5035714286
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"Context": "selective",
|
207 |
+
"Method": "holistic",
|
208 |
+
"Model": "deepseek-coder-33b-instruct",
|
209 |
+
"Pass_at_1": 0.4202826585
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"Context": "selective",
|
213 |
+
"Method": "holistic",
|
214 |
+
"Model": "gpt-3.5-turbo-1106",
|
215 |
+
"Pass_at_1": 0.3443277311
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"Context": "selective",
|
219 |
+
"Method": "independent",
|
220 |
+
"Model": "deepseek-coder-33b-instruct",
|
221 |
+
"Pass_at_1": 0.3378676471
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"Context": "selective",
|
225 |
+
"Method": "holistic",
|
226 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
227 |
+
"Pass_at_1": 0.3183823529
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"Context": "selective",
|
231 |
+
"Method": "holistic",
|
232 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
233 |
+
"Pass_at_1": 0.3121848739
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"Context": "selective",
|
237 |
+
"Method": "independent",
|
238 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
239 |
+
"Pass_at_1": 0.2836134454
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"Context": "selective",
|
243 |
+
"Method": "incremental",
|
244 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
245 |
+
"Pass_at_1": 0.2621848739
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"Context": "selective",
|
249 |
+
"Method": "holistic",
|
250 |
+
"Model": "WizardCoder-15B-V1.0",
|
251 |
+
"Pass_at_1": 0.2240546218
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"Context": "selective",
|
255 |
+
"Method": "independent",
|
256 |
+
"Model": "gpt-3.5-turbo-1106",
|
257 |
+
"Pass_at_1": 0.1930147059
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"Context": "selective",
|
261 |
+
"Method": "incremental",
|
262 |
+
"Model": "gpt-3.5-turbo-1106",
|
263 |
+
"Pass_at_1": 0.0955357143
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"Context": "selective",
|
267 |
+
"Method": "independent",
|
268 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
269 |
+
"Pass_at_1": 0.0932773109
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"Context": "selective",
|
273 |
+
"Method": "incremental",
|
274 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
275 |
+
"Pass_at_1": 0.0701680672
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"Context": "selective",
|
279 |
+
"Method": "incremental",
|
280 |
+
"Model": "deepseek-coder-33b-instruct",
|
281 |
+
"Pass_at_1": 0.0352941176
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"Context": "selective",
|
285 |
+
"Method": "independent",
|
286 |
+
"Model": "WizardCoder-15B-V1.0",
|
287 |
+
"Pass_at_1": 0.0
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"Context": "selective",
|
291 |
+
"Method": "incremental",
|
292 |
+
"Model": "WizardCoder-15B-V1.0",
|
293 |
+
"Pass_at_1": 0.0
|
294 |
+
}
|
295 |
+
],
|
296 |
+
"pass_class_wise": [
|
297 |
+
{
|
298 |
+
"Context": "selective",
|
299 |
+
"Method": "holistic",
|
300 |
+
"Model": "gpt-3.5-turbo-1106",
|
301 |
+
"Pass_at_1": 0.7832360347
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"Context": "selective",
|
305 |
+
"Method": "holistic",
|
306 |
+
"Model": "deepseek-coder-33b-instruct",
|
307 |
+
"Pass_at_1": 0.723699056
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"Context": "selective",
|
311 |
+
"Method": "incremental",
|
312 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
313 |
+
"Pass_at_1": 0.7036481325
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"Context": "selective",
|
317 |
+
"Method": "holistic",
|
318 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
319 |
+
"Pass_at_1": 0.6855203826
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"Context": "selective",
|
323 |
+
"Method": "incremental",
|
324 |
+
"Model": "gpt-3.5-turbo-1106",
|
325 |
+
"Pass_at_1": 0.6846699639
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"Context": "selective",
|
329 |
+
"Method": "holistic",
|
330 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
331 |
+
"Pass_at_1": 0.6808480861
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"Context": "selective",
|
335 |
+
"Method": "independent",
|
336 |
+
"Model": "gpt-3.5-turbo-1106",
|
337 |
+
"Pass_at_1": 0.6772858762
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"Context": "selective",
|
341 |
+
"Method": "independent",
|
342 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
343 |
+
"Pass_at_1": 0.6547244155
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"Context": "selective",
|
347 |
+
"Method": "independent",
|
348 |
+
"Model": "deepseek-coder-33b-instruct",
|
349 |
+
"Pass_at_1": 0.6547232007
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"Context": "selective",
|
353 |
+
"Method": "holistic",
|
354 |
+
"Model": "gpt-4o-2024-05-13",
|
355 |
+
"Pass_at_1": 0.6545897285
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"Context": "selective",
|
359 |
+
"Method": "holistic",
|
360 |
+
"Model": "WizardCoder-15B-V1.0",
|
361 |
+
"Pass_at_1": 0.5674101922
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"Context": "selective",
|
365 |
+
"Method": "incremental",
|
366 |
+
"Model": "deepseek-coder-33b-instruct",
|
367 |
+
"Pass_at_1": 0.5603969625
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"Context": "selective",
|
371 |
+
"Method": "incremental",
|
372 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
373 |
+
"Pass_at_1": 0.4878321662
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"Context": "selective",
|
377 |
+
"Method": "independent",
|
378 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
379 |
+
"Pass_at_1": 0.4863639752
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"Context": "selective",
|
383 |
+
"Method": "independent",
|
384 |
+
"Model": "WizardCoder-15B-V1.0",
|
385 |
+
"Pass_at_1": 0.4261740357
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"Context": "selective",
|
389 |
+
"Method": "incremental",
|
390 |
+
"Model": "WizardCoder-15B-V1.0",
|
391 |
+
"Pass_at_1": 0.3468474087
|
392 |
+
}
|
393 |
+
],
|
394 |
+
"pass_test_wise": [
|
395 |
+
{
|
396 |
+
"Context": "selective",
|
397 |
+
"Method": "holistic",
|
398 |
+
"Model": "gpt-4o-2024-05-13",
|
399 |
+
"Pass_at_1": 0.3438179726
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"Context": "selective",
|
403 |
+
"Method": "holistic",
|
404 |
+
"Model": "deepseek-coder-33b-instruct",
|
405 |
+
"Pass_at_1": 0.3047552867
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"Context": "selective",
|
409 |
+
"Method": "holistic",
|
410 |
+
"Model": "gpt-3.5-turbo-1106",
|
411 |
+
"Pass_at_1": 0.2941156144
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"Context": "selective",
|
415 |
+
"Method": "holistic",
|
416 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
417 |
+
"Pass_at_1": 0.2544265255
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"Context": "selective",
|
421 |
+
"Method": "independent",
|
422 |
+
"Model": "deepseek-coder-33b-instruct",
|
423 |
+
"Pass_at_1": 0.2224382166
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"Context": "selective",
|
427 |
+
"Method": "independent",
|
428 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
429 |
+
"Pass_at_1": 0.2083516025
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"Context": "selective",
|
433 |
+
"Method": "holistic",
|
434 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
435 |
+
"Pass_at_1": 0.2028454735
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"Context": "selective",
|
439 |
+
"Method": "incremental",
|
440 |
+
"Model": "deepseek-coder-6.7b-instruct",
|
441 |
+
"Pass_at_1": 0.1967821219
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"Context": "selective",
|
445 |
+
"Method": "independent",
|
446 |
+
"Model": "gpt-3.5-turbo-1106",
|
447 |
+
"Pass_at_1": 0.1930147059
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"Context": "selective",
|
451 |
+
"Method": "holistic",
|
452 |
+
"Model": "WizardCoder-15B-V1.0",
|
453 |
+
"Pass_at_1": 0.1669267449
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"Context": "selective",
|
457 |
+
"Method": "independent",
|
458 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
459 |
+
"Pass_at_1": 0.0714792814
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"Context": "selective",
|
463 |
+
"Method": "incremental",
|
464 |
+
"Model": "Phind-CodeLlama-34B-v2",
|
465 |
+
"Pass_at_1": 0.061012122
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"Context": "selective",
|
469 |
+
"Method": "incremental",
|
470 |
+
"Model": "gpt-3.5-turbo-1106",
|
471 |
+
"Pass_at_1": 0.0514928193
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"Context": "selective",
|
475 |
+
"Method": "incremental",
|
476 |
+
"Model": "deepseek-coder-33b-instruct",
|
477 |
+
"Pass_at_1": 0.0350620781
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"Context": "selective",
|
481 |
+
"Method": "independent",
|
482 |
+
"Model": "WizardCoder-15B-V1.0",
|
483 |
+
"Pass_at_1": 0.0
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"Context": "selective",
|
487 |
+
"Method": "incremental",
|
488 |
+
"Model": "WizardCoder-15B-V1.0",
|
489 |
+
"Pass_at_1": 0.0
|
490 |
+
}
|
491 |
+
]
|
492 |
+
}
|
data/models.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"model": "gpt-3.5-turbo-1106",
|
4 |
+
"link": "https://openai.com/"
|
5 |
+
},
|
6 |
+
{
|
7 |
+
"model": "gpt-4o-2024-05-13",
|
8 |
+
"link": "https://openai.com/"
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"model": "deepseek-coder-33b-instruct",
|
12 |
+
"link": "https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct",
|
13 |
+
"size": 33
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"model": "deepseek-coder-6.7b-instruct",
|
17 |
+
"link": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct",
|
18 |
+
"size": 6.7
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"model": "Phind-CodeLlama-34B-v2",
|
22 |
+
"link": "https://huggingface.co/Phind/Phind-CodeLlama-34B-v2",
|
23 |
+
"size": 34
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"model": "WizardCoder-15B-V1.0",
|
27 |
+
"link": "https://huggingface.co/WizardLMTeam/WizardCoder-15B-V1.0",
|
28 |
+
"size": 15
|
29 |
+
}
|
30 |
+
]
|
src/display/utils.py
CHANGED
@@ -23,22 +23,28 @@ class ColumnContent:
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
-
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
-
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
#Scores
|
29 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
30 |
-
|
31 |
-
|
32 |
-
#
|
33 |
-
auto_eval_column_dict.append(["
|
34 |
-
auto_eval_column_dict.append(["
|
35 |
-
auto_eval_column_dict.append(["
|
36 |
-
auto_eval_column_dict.append(["
|
37 |
-
auto_eval_column_dict.append(["
|
38 |
-
auto_eval_column_dict.append(["
|
39 |
-
|
40 |
-
auto_eval_column_dict.append(["
|
41 |
-
auto_eval_column_dict.append(["
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
+
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
+
# auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
#Scores
|
29 |
+
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
30 |
+
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
31 |
+
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
32 |
+
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
33 |
+
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
34 |
+
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
35 |
+
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
36 |
+
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
37 |
+
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
38 |
+
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
39 |
+
|
40 |
+
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
41 |
+
auto_eval_column_dict.append(["context", ColumnContent, ColumnContent("Context", "str", True, never_hidden=True)])
|
42 |
+
auto_eval_column_dict.append(["method", ColumnContent, ColumnContent("Method", "str", True, never_hidden=True)])
|
43 |
+
auto_eval_column_dict.append(["completion", ColumnContent, ColumnContent("Completion", "number", True, never_hidden=True)])
|
44 |
+
auto_eval_column_dict.append(["compilation_class_wise", ColumnContent, ColumnContent("Compilation(class)", "number", True, never_hidden=True)])
|
45 |
+
auto_eval_column_dict.append(["compilation_test_wise", ColumnContent, ColumnContent("Compilation(test)", "number", True, never_hidden=True)])
|
46 |
+
auto_eval_column_dict.append(["pass_class_wise", ColumnContent, ColumnContent("Pass(class)", "number", True, never_hidden=True)])
|
47 |
+
auto_eval_column_dict.append(["pass_test_wise", ColumnContent, ColumnContent("Pass(test)", "number", True, never_hidden=True)])
|
48 |
|
49 |
# We use make dataclass to dynamically fill the scores from Tasks
|
50 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|