Spaces:
Sleeping
Sleeping
import random | |
import numpy as np | |
import torch | |
import torch.utils.data | |
import nn_layers | |
from scipy.io.wavfile import read | |
from text import text_to_sequence | |
from hyper_parameters import tacotron_params | |
torch.manual_seed(1234) | |
class DataPreparation(torch.utils.data.Dataset): | |
def __init__(self, audiopaths_and_text, tacotron_hyperparams): | |
self.audiopaths_and_text = audiopaths_and_text | |
self.audio_text_parameters = tacotron_hyperparams | |
self.stft = nn_layers.TacotronSTFT(tacotron_hyperparams['filter_length'], tacotron_hyperparams['hop_length'], | |
tacotron_hyperparams['win_length'], tacotron_hyperparams['n_mel_channels'], | |
self.audio_text_parameters['sampling_rate'], | |
tacotron_hyperparams['mel_fmin'], tacotron_hyperparams['mel_fmax']) | |
random.seed(1234) | |
random.shuffle(self.audiopaths_and_text) | |
def load_audiowav_torch(self, audiopath, samp_rate): | |
sr, data = read(audiopath) | |
assert samp_rate == sr, "Sample rate does not match with the configuration" | |
return torch.FloatTensor(data.astype(np.float32)) | |
def melspec_textSequence_pair(self, audiopath_and_text): | |
wav_path, sentence = audiopath_and_text[0], audiopath_and_text[1] | |
# wav to torch tensor | |
wav_torch = self.load_audiowav_torch(wav_path, self.audio_text_parameters['sampling_rate']) | |
wav_torch_norm = wav_torch / self.audio_text_parameters['max_wav_value'] | |
wav_torch_norm = wav_torch_norm.unsqueeze(0) | |
wav_torch_norm = torch.autograd.Variable(wav_torch_norm, requires_grad=False) | |
mel_spec = self.stft.mel_spectrogram(wav_torch_norm) | |
mel_spec = torch.squeeze(mel_spec, 0) | |
# text to torch integer tensor sequence | |
sentence_sequence = torch.IntTensor(text_to_sequence(sentence, self.audio_text_parameters['text_cleaners'])) | |
return sentence_sequence, mel_spec | |
def __getitem__(self, index): | |
return self.melspec_textSequence_pair(self.audiopaths_and_text[index]) | |
def __len__(self): | |
return len(self.audiopaths_and_text) | |
class DataCollate: | |
def __init__(self, number_frames_step): | |
self.number_frames_step = number_frames_step | |
def __call__(self, batch): | |
inp_lengths, sorted_decreasing = torch.sort(torch.LongTensor([len(x[0]) for x in batch]), | |
dim=0, descending=True) | |
max_length_in = inp_lengths[0] | |
# padding sentences sequences for a fixed-length tensor size | |
sentences_padded = torch.LongTensor(len(batch), max_length_in) | |
sentences_padded.zero_() | |
for i in range(len(sorted_decreasing)): | |
int_seq_sentence = batch[sorted_decreasing[i]][0] | |
# all slots of a line until the end of the sentence. The rest, 0's | |
sentences_padded[i, :int_seq_sentence.size(0)] = int_seq_sentence | |
# length of the mel filterbank used | |
num_melfilters = batch[0][1].size(0) | |
# longest recorded spectrogram representation + 1 space to mark the end | |
max_length_target = max([x[1].size(1) for x in batch]) # THERE IS A CHANGE FROM THE ORIGINAL CODE!!! | |
# add extra space if the number of frames per step is higher than 1 | |
if max_length_target % self.number_frames_step != 0: | |
max_length_target += self.number_frames_step - max_length_target % self.number_frames_step | |
assert max_length_target % self.number_frames_step == 0 | |
# padding mel spectrogram representations. The output is a 3D tensor | |
melspec_padded = torch.FloatTensor(len(batch), num_melfilters, max_length_target) | |
melspec_padded.zero_() | |
# GST new prosody matrices definition with zero padding: | |
prosody_padded = torch.FloatTensor(len(batch), num_melfilters, max_length_target) | |
prosody_padded.zero_() | |
gate_padded = torch.FloatTensor(len(batch), max_length_target) | |
gate_padded.zero_() | |
output_lengths = torch.LongTensor(len(batch)) | |
for j in range(len(sorted_decreasing)): | |
melspec = batch[sorted_decreasing[j]][1] | |
melspec_padded[j, :, :melspec.size(1)] = melspec | |
# GST filling padded prosody matrix: | |
prosody_padded[j, :, :melspec.size(1)] = melspec | |
gate_padded[j, melspec.size(1) - 1:] = 1 | |
output_lengths[j] = melspec.size(1) | |
return sentences_padded, inp_lengths, melspec_padded, gate_padded, output_lengths, prosody_padded | |