Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from nn_layers import convolutional_module | |
torch.manual_seed(1234) | |
class Postnet(nn.Module): | |
"""Postnet | |
- Five 1-d convolution with 512 channels and kernel size 5 | |
""" | |
def __init__(self, tacotron_hyperparams): | |
super(Postnet, self).__init__() | |
# self.dropout = nn.Dropout(0.5) | |
self.convolutions = nn.ModuleList() | |
self.convolutions.append( | |
nn.Sequential( | |
convolutional_module(tacotron_hyperparams['n_mel_channels'], | |
tacotron_hyperparams['postnet_embedding_dim'], | |
kernel_size=tacotron_hyperparams['postnet_kernel_size'], stride=1, | |
padding=int((tacotron_hyperparams['postnet_kernel_size'] - 1) / 2), | |
dilation=1, w_init_gain='tanh'), | |
nn.BatchNorm1d(tacotron_hyperparams['postnet_embedding_dim'])) | |
) | |
for i in range(1, tacotron_hyperparams['postnet_n_convolutions'] - 1): | |
self.convolutions.append( | |
nn.Sequential( | |
convolutional_module(tacotron_hyperparams['postnet_embedding_dim'], | |
tacotron_hyperparams['postnet_embedding_dim'], | |
kernel_size=tacotron_hyperparams['postnet_kernel_size'], stride=1, | |
padding=int((tacotron_hyperparams['postnet_kernel_size'] - 1) / 2), | |
dilation=1, w_init_gain='tanh'), | |
nn.BatchNorm1d(tacotron_hyperparams['postnet_embedding_dim'])) | |
) | |
self.convolutions.append( | |
nn.Sequential( | |
convolutional_module(tacotron_hyperparams['postnet_embedding_dim'], | |
tacotron_hyperparams['n_mel_channels'], | |
kernel_size=tacotron_hyperparams['postnet_kernel_size'], stride=1, | |
padding=int((tacotron_hyperparams['postnet_kernel_size'] - 1) / 2), | |
dilation=1, w_init_gain='linear'), | |
nn.BatchNorm1d(tacotron_hyperparams['n_mel_channels'])) | |
) | |
def forward(self, x): | |
for i in range(len(self.convolutions) - 1): | |
x = F.dropout(torch.tanh(self.convolutions[i](x)), 0.5, self.training) | |
x = F.dropout(self.convolutions[-1](x), 0.5, self.training) | |
return x | |