tacotron2-gst-en / Tacotron2.py
mireiafarrus's picture
tacotron2 and hifigan upload
af7ac2b
raw
history blame
4.83 kB
from math import sqrt
import torch
from torch import nn
from Encoder import Encoder
from Decoder import Decoder
from Postnet import Postnet
from GST import GST
from utils import to_gpu, get_mask_from_lengths
from fp16_optimizer import fp32_to_fp16, fp16_to_fp32
torch.manual_seed(1234)
class tacotron_2(nn.Module):
def __init__(self, tacotron_hyperparams):
super(tacotron_2, self).__init__()
self.mask_padding = tacotron_hyperparams['mask_padding']
self.fp16_run = tacotron_hyperparams['fp16_run']
self.n_mel_channels = tacotron_hyperparams['n_mel_channels']
self.n_frames_per_step = tacotron_hyperparams['number_frames_step']
self.embedding = nn.Embedding(
tacotron_hyperparams['n_symbols'], tacotron_hyperparams['symbols_embedding_length'])
# CHECK THIS OUT!!!
std = sqrt(2.0 / (tacotron_hyperparams['n_symbols'] + tacotron_hyperparams['symbols_embedding_length']))
val = sqrt(3.0) * std
self.embedding.weight.data.uniform_(-val, val)
self.encoder = Encoder(tacotron_hyperparams)
self.decoder = Decoder(tacotron_hyperparams)
self.postnet = Postnet(tacotron_hyperparams)
self.gst = GST(tacotron_hyperparams)
def parse_batch(self, batch):
# GST I add the new tensor from prosody features to train GST tokens:
text_padded, input_lengths, mel_padded, gate_padded, output_lengths, prosody_padded = batch
text_padded = to_gpu(text_padded).long()
max_len = int(torch.max(input_lengths.data).item()) # With item() you get the pure value (not in a tensor)
input_lengths = to_gpu(input_lengths).long()
mel_padded = to_gpu(mel_padded).float()
gate_padded = to_gpu(gate_padded).float()
output_lengths = to_gpu(output_lengths).long()
prosody_padded = to_gpu(prosody_padded).float()
return (
(text_padded, input_lengths, mel_padded, max_len, output_lengths, prosody_padded),
(mel_padded, gate_padded))
def parse_input(self, inputs):
inputs = fp32_to_fp16(inputs) if self.fp16_run else inputs
return inputs
def parse_output(self, outputs, output_lengths=None):
if self.mask_padding and output_lengths is not None:
mask = ~get_mask_from_lengths(output_lengths)
mask = mask.expand(self.n_mel_channels, mask.size(0), mask.size(1))
mask = mask.permute(1, 0, 2)
outputs[0].data.masked_fill_(mask, 0.0)
outputs[1].data.masked_fill_(mask, 0.0)
outputs[2].data.masked_fill_(mask[:, 0, :], 1e3) # gate energies
outputs = fp16_to_fp32(outputs) if self.fp16_run else outputs
return outputs
def forward(self, inputs):
inputs, input_lengths, targets, max_len, output_lengths, gst_prosody_padded = self.parse_input(inputs)
input_lengths, output_lengths = input_lengths.data, output_lengths.data
embedded_inputs = self.embedding(inputs).transpose(1, 2)
encoder_outputs = self.encoder(embedded_inputs, input_lengths)
# GST style embedding plus embedded_inputs before entering the decoder
# bin_locations = gst_prosody_padded[:, 0, :]
# pitch_intensities = gst_prosody_padded[:, 1:, :]
# bin_locations = bin_locations.unsqueeze(2)
gst_style_embedding, gst_scores = self.gst(gst_prosody_padded, output_lengths) # [N, 512]
gst_style_embedding = gst_style_embedding.expand_as(encoder_outputs)
encoder_outputs = encoder_outputs + gst_style_embedding
mel_outputs, gate_outputs, alignments = self.decoder(
encoder_outputs, targets, memory_lengths=input_lengths)
mel_outputs_postnet = self.postnet(mel_outputs)
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
return self.parse_output(
[mel_outputs, mel_outputs_postnet, gate_outputs, alignments, gst_scores],
output_lengths)
def inference(self, inputs, gst_scores): # gst_scores must be a torch tensor
inputs = self.parse_input(inputs)
embedded_inputs = self.embedding(inputs).transpose(1, 2)
encoder_outputs = self.encoder.inference(embedded_inputs)
# GST inference:
gst_style_embedding = self.gst.inference(gst_scores)
gst_style_embedding = gst_style_embedding.expand_as(encoder_outputs)
encoder_outputs = encoder_outputs + gst_style_embedding
mel_outputs, gate_outputs, alignments = self.decoder.inference(
encoder_outputs)
mel_outputs_postnet = self.postnet(mel_outputs)
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
outputs = self.parse_output(
[mel_outputs, mel_outputs_postnet, gate_outputs, alignments])
return outputs