mireiafarrus
commited on
Commit
路
9fe9663
1
Parent(s):
87308cb
Upload 6 files
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from examples import *
|
6 |
+
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
|
9 |
+
asr = pipeline(
|
10 |
+
"automatic-speech-recognition",
|
11 |
+
model="MaximilianChen/Casper",
|
12 |
+
chunk_length_s=30,
|
13 |
+
device=device,
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
def transcribe_audio(file=None, mic=None):
|
18 |
+
if mic is not None:
|
19 |
+
audio = mic
|
20 |
+
elif file is not None:
|
21 |
+
audio = file
|
22 |
+
else:
|
23 |
+
return "You must either provide a mic recording or a file"
|
24 |
+
transcription = asr(audio)["text"]
|
25 |
+
return transcription
|
26 |
+
|
27 |
+
|
28 |
+
# css=".gradio-container {background: url('file=background_images/wallpaper_test_mod_2.jpg')}"
|
29 |
+
with gr.Blocks() as demo:
|
30 |
+
|
31 |
+
gr.Markdown("<center><h1>CASPER</h1> "
|
32 |
+
"<h2>Catalan Automatic Speech Recognition using Fine-Tuned Whisper</h2></center>")
|
33 |
+
|
34 |
+
with gr.Row():
|
35 |
+
with gr.Column():
|
36 |
+
audio_from_microphone = gr.Audio(source="microphone", label="Mic", type="filepath")
|
37 |
+
audio_from_file = gr.Audio(source="upload", label="File", type="filepath")
|
38 |
+
with gr.Row():
|
39 |
+
with gr.Column(scale=2):
|
40 |
+
asr_btn = gr.Button("Transcribe!")
|
41 |
+
with gr.Column(scale=0):
|
42 |
+
cln_btn = gr.ClearButton(value='Clear', components=[audio_from_microphone, audio_from_file])
|
43 |
+
with gr.Column():
|
44 |
+
output_text = gr.Textbox(label="Generated Transcription")
|
45 |
+
del_text = gr.ClearButton(value='Delete Text', components=output_text)
|
46 |
+
gr.Markdown("<sub>NOTE: This model does not generate punctuation and casing</sub>")
|
47 |
+
|
48 |
+
asr_btn.click(fn=transcribe_audio,
|
49 |
+
inputs=[audio_from_file, audio_from_microphone],
|
50 |
+
outputs=output_text)
|
51 |
+
|
52 |
+
with gr.Row():
|
53 |
+
with gr.Column():
|
54 |
+
gr.Markdown("### Audio Examples")
|
55 |
+
gr.Examples(examples=infer_from_audio_examples,
|
56 |
+
label="From Catalan Google TTS dataset",
|
57 |
+
inputs=[audio_from_file, audio_from_microphone],
|
58 |
+
outputs=output_text,
|
59 |
+
fn=transcribe_audio,
|
60 |
+
cache_examples=True, )
|
61 |
+
gr.Markdown("### More Details")
|
62 |
+
gr.Markdown("The model used is a small version of the Whisper architecture. "
|
63 |
+
"Please, find more details about it in this [link](https://huggingface.co/openai/whisper-small) <br>"
|
64 |
+
"Whisper has been fine-tuned using the catalan CommonVoice v.11 and the ParlamentParla datasets. "
|
65 |
+
"More information about results and evaluation can be found in "
|
66 |
+
"[here](https://huggingface.co/MaximilianChen/Casper)")
|
67 |
+
|
68 |
+
demo.launch()
|
catalan_audio_examples/catalan_female_speech_1.wav
ADDED
Binary file (557 kB). View file
|
|
catalan_audio_examples/catalan_female_speech_2.wav
ADDED
Binary file (459 kB). View file
|
|
catalan_audio_examples/catalan_male_speech_1.wav
ADDED
Binary file (778 kB). View file
|
|
examples.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# list of examples for quick inferences:
|
2 |
+
infer_from_audio_examples = [
|
3 |
+
["catalan_audio_examples/catalan_female_speech_1.wav", None],
|
4 |
+
["catalan_audio_examples/catalan_female_speech_2.wav", None],
|
5 |
+
["catalan_audio_examples/catalan_male_speech_1.wav", None],
|
6 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
torchaudio
|