Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -17,32 +17,6 @@ model_id_4 = "lordtt13/emo-mobilebert"
|
|
17 |
model_id_5 = "juliensimon/reviews-sentiment-analysis"
|
18 |
|
19 |
|
20 |
-
def load_agent(model_id):
|
21 |
-
"""
|
22 |
-
This function load the agent's results
|
23 |
-
"""
|
24 |
-
# Load the metrics
|
25 |
-
metadata = get_metadata(model_id)
|
26 |
-
# get predictions
|
27 |
-
predictions = predict(model_id)
|
28 |
-
|
29 |
-
return model_id, predictions
|
30 |
-
|
31 |
-
|
32 |
-
def get_metadata(model_id):
|
33 |
-
"""
|
34 |
-
Get the metadata of the model repo
|
35 |
-
:param model_id:
|
36 |
-
:return: metadata
|
37 |
-
"""
|
38 |
-
try:
|
39 |
-
readme_path = hf_hub_download(model_id, filename="README.md")
|
40 |
-
metadata = metadata_load(readme_path)
|
41 |
-
print(metadata)
|
42 |
-
return metadata
|
43 |
-
except requests.exceptions.HTTPError:
|
44 |
-
return None
|
45 |
-
|
46 |
def get_prediction(model_id):
|
47 |
|
48 |
classifier = pipeline("text-classification", model=model_id, return_all_scores=True)
|
@@ -68,61 +42,17 @@ with app:
|
|
68 |
"""
|
69 |
**Model Predictions**
|
70 |
""")
|
71 |
-
|
72 |
-
gr.Markdown(
|
73 |
-
"""
|
74 |
-
Model 1 = nlptown/bert-base-multilingual-uncased-sentiment
|
75 |
-
""")
|
76 |
-
|
77 |
-
with gr.Row():
|
78 |
-
btn1 = gr.Button("Predict - Model 1")
|
79 |
-
with gr.Row():
|
80 |
-
out_1 = gr.Textbox(label="Predictions for Model 1")
|
81 |
-
btn1.click(fn=get_prediction(model_id_1), inputs=inp_1, outputs=out_1)
|
82 |
-
|
83 |
-
gr.Markdown(
|
84 |
-
"""
|
85 |
-
Model 2 = microsoft/deberta-base
|
86 |
-
""")
|
87 |
-
|
88 |
-
with gr.Row():
|
89 |
-
btn2 = gr.Button("Predict - Model 2")
|
90 |
-
with gr.Row():
|
91 |
-
out_2 = gr.Textbox(label="Predictions for Model 2")
|
92 |
-
btn2.click(fn=get_prediction(model_id_2), inputs=inp_1, outputs=out_2)
|
93 |
-
|
94 |
-
gr.Markdown(
|
95 |
-
"""
|
96 |
-
Model 3 = distilbert-base-uncased-finetuned-sst-2-english"
|
97 |
-
""")
|
98 |
-
|
99 |
-
with gr.Row():
|
100 |
-
btn3 = gr.Button("Predict - Model 3")
|
101 |
-
with gr.Row():
|
102 |
-
out_3 = gr.Textbox(label="Predictions for Model 3")
|
103 |
-
btn3.click(fn=get_prediction(model_id_3), inputs=inp_1, outputs=out_3)
|
104 |
-
|
105 |
-
gr.Markdown(
|
106 |
-
"""
|
107 |
-
Model 4 = lordtt13/emo-mobilebert
|
108 |
-
""")
|
109 |
-
|
110 |
-
with gr.Row():
|
111 |
-
btn4 = gr.Button("Predict - Model 4")
|
112 |
with gr.Row():
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
out_5 = gr.Textbox(label="Predictions for Model 5")
|
125 |
-
btn5.click(fn=get_prediction(model_id_5), inputs=inp_1, outputs=out_5)
|
126 |
-
|
127 |
|
128 |
app.launch()
|
|
|
17 |
model_id_5 = "juliensimon/reviews-sentiment-analysis"
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def get_prediction(model_id):
|
21 |
|
22 |
classifier = pipeline("text-classification", model=model_id, return_all_scores=True)
|
|
|
42 |
"""
|
43 |
**Model Predictions**
|
44 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
with gr.Row():
|
46 |
+
with gr.Column():
|
47 |
+
text1 = gr.Textbox(label="Model 1 = nlptown/bert-base-multilingual-uncased-sentiment")
|
48 |
+
btn1 = gr.Button("Predict - Model 1")
|
49 |
+
text2 = gr.Textbox(label="Model 2 = microsoft/deberta-base")
|
50 |
+
btn2 = gr.Button("Predict - Model 2")
|
51 |
+
with gr.Column():
|
52 |
+
out_1 = gr.Textbox(label="Predictions for Model 1")
|
53 |
+
out_2 = gr.Textbox(label="Predictions for Model 2")
|
54 |
+
btn1.click(fn=get_prediction(model_id_1), inputs=inp_1, outputs=out_1)
|
55 |
+
btn2.click(fn=get_prediction(model_id_2), inputs=inp_1, outputs=out_2)
|
56 |
+
|
|
|
|
|
|
|
57 |
|
58 |
app.launch()
|