CK0607 commited on
Commit
185f4e1
·
verified ·
1 Parent(s): a1ed948

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -59
app.py CHANGED
@@ -1,63 +1,63 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
 
 
59
  )
60
 
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from unsloth import FastLanguageModel
3
+ from transformers import TextStreamer
4
+ import torch
5
+
6
+ # Function to load the model
7
+ def load_model(model_name, max_seq_length, dtype, load_in_4bit, token=None):
8
+ model, tokenizer = FastLanguageModel.from_pretrained(
9
+ model_name=model_name,
10
+ max_seq_length=max_seq_length,
11
+ dtype=dtype,
12
+ load_in_4bit=load_in_4bit,
13
+ token=token
14
+ )
15
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
16
+ return model, tokenizer
17
+
18
+ # Load the model
19
+ model_name = "unsloth/Phi-3-mini-4k-instruct"
20
+ token = None # Replace with your token if required
21
+
22
+ model, tokenizer = load_model(model_name, max_seq_length=2048, dtype=None, load_in_4bit=True, token=token)
23
+
24
+ def generate_response(instruction, input_text, max_new_tokens):
25
+ alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
26
+
27
+ ### Instruction:
28
+ {}
29
+
30
+ ### Input:
31
+ {}
32
+
33
+ ### Response:
34
+ {}"""
35
+
36
+ inputs = tokenizer(
37
+ [
38
+ alpaca_prompt.format(
39
+ instruction, # instruction
40
+ input_text, # input
41
+ "" # output - leave this blank for generation!
42
+ )
43
+ ], return_tensors="pt").to("cuda")
44
+
45
+ text_streamer = TextStreamer(tokenizer)
46
+ output = model.generate(**inputs, streamer=text_streamer, max_new_tokens=max_new_tokens)
47
+
48
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
49
+ return response
50
+
51
+ # Gradio Interface
52
+ iface = gr.Interface(
53
+ fn=generate_response,
54
+ inputs=[
55
+ gr.Textbox(lines=2, label="Instruction", placeholder="Continue the Fibonacci sequence."),
56
+ gr.Textbox(lines=2, label="Input", placeholder="1, 1, 2, 3, 5, 8"),
57
+ gr.Slider(1, 2048, value=128, step=1, label="Max New Tokens")
58
  ],
59
+ outputs=gr.Textbox(label="Response", lines=10),
60
+ title="Language Model Chat UI"
61
  )
62
 
63
+ iface.launch()