Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,11 +5,10 @@
|
|
| 5 |
import os, glob, requests
|
| 6 |
from langchain.docstore.document import Document
|
| 7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
-
from
|
| 9 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
| 10 |
from docx import Document as DocxDocument
|
| 11 |
import gradio as gr
|
| 12 |
-
from langchain_community.vectorstores import FAISS
|
| 13 |
|
| 14 |
# -------------------------------
|
| 15 |
# 2. 環境變數與資料路徑
|
|
@@ -17,7 +16,7 @@ from langchain_community.vectorstores import FAISS
|
|
| 17 |
TXT_FOLDER = "./out_texts"
|
| 18 |
DB_PATH = "./faiss_db"
|
| 19 |
os.makedirs(DB_PATH, exist_ok=True)
|
| 20 |
-
os.makedirs(TXT_FOLDER, exist_ok=True)
|
| 21 |
|
| 22 |
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
| 23 |
if not HF_TOKEN:
|
|
@@ -51,53 +50,47 @@ else:
|
|
| 51 |
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
| 52 |
|
| 53 |
# -------------------------------
|
| 54 |
-
# 4.
|
| 55 |
# -------------------------------
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
huggingfacehub_api_token=HF_TOKEN,
|
| 60 |
-
temperature=0.7,
|
| 61 |
-
max_new_tokens=512,
|
| 62 |
-
)
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
try:
|
| 77 |
-
r = requests.get("https://huggingface.co/api/whoami
|
| 78 |
r.raise_for_status()
|
| 79 |
data = r.json()
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
return False
|
| 83 |
except Exception:
|
| 84 |
-
return
|
| 85 |
-
|
| 86 |
-
token_valid = check_hf_token_permissions()
|
| 87 |
-
if not token_valid:
|
| 88 |
-
print("⚠ 警告:Hugging Face API Token 權限不足,無法呼叫模型。")
|
| 89 |
-
|
| 90 |
|
| 91 |
# -------------------------------
|
| 92 |
-
# 6.
|
| 93 |
# -------------------------------
|
| 94 |
-
def
|
| 95 |
-
if not token_valid:
|
| 96 |
-
# Token 權限不足,直接返回訊息
|
| 97 |
-
yield "⚠ API Token 權限不足,請檢查 Token 是否允許呼叫 Inference Endpoint。", None
|
| 98 |
-
return
|
| 99 |
-
|
| 100 |
-
import time
|
| 101 |
docx_file = "/tmp/generated_article.docx"
|
| 102 |
doc = DocxDocument()
|
| 103 |
doc.add_heading(query, level=1)
|
|
@@ -106,33 +99,24 @@ def generate_article_with_progress(query, segments=5):
|
|
| 106 |
prompt = f"請依據下列主題生成段落:{query}\n\n每段約150-200字。"
|
| 107 |
|
| 108 |
for i in range(int(segments)):
|
| 109 |
-
|
| 110 |
-
result = qa_chain({"query": prompt})
|
| 111 |
-
paragraph = result.get("result", "").strip()
|
| 112 |
-
if not paragraph:
|
| 113 |
-
paragraph = "(本段生成失敗,請嘗試減少段落或改用較小模型。)"
|
| 114 |
-
except Exception as e:
|
| 115 |
-
paragraph = f"(本段生成失敗:{e})"
|
| 116 |
-
|
| 117 |
all_text.append(paragraph)
|
| 118 |
doc.add_paragraph(paragraph)
|
| 119 |
prompt = f"請接續上一段生成下一段:\n{paragraph}\n\n下一段:"
|
| 120 |
|
|
|
|
| 121 |
yield "\n\n".join(all_text), None
|
| 122 |
-
time.sleep(0.1)
|
| 123 |
|
| 124 |
doc.save(docx_file)
|
| 125 |
rate_info = get_hf_rate_limit()
|
| 126 |
-
|
| 127 |
-
yield final_text, docx_file
|
| 128 |
-
|
| 129 |
|
| 130 |
# -------------------------------
|
| 131 |
-
# 7. Gradio
|
| 132 |
# -------------------------------
|
| 133 |
with gr.Blocks() as demo:
|
| 134 |
gr.Markdown("# 佛教經論 RAG 系統 (HF API)")
|
| 135 |
-
gr.Markdown("使用 Hugging Face
|
| 136 |
|
| 137 |
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
|
| 138 |
segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
|
|
@@ -140,17 +124,14 @@ with gr.Blocks() as demo:
|
|
| 140 |
output_file = gr.File(label="下載 DOCX")
|
| 141 |
|
| 142 |
btn = gr.Button("生成文章")
|
| 143 |
-
|
| 144 |
-
# 使用 .click() 搭配 generator
|
| 145 |
btn.click(
|
| 146 |
-
|
| 147 |
inputs=[query_input, segments_input],
|
| 148 |
outputs=[output_text, output_file]
|
| 149 |
)
|
| 150 |
|
| 151 |
# -------------------------------
|
| 152 |
-
# 8. 啟動 Gradio(
|
| 153 |
# -------------------------------
|
| 154 |
if __name__ == "__main__":
|
| 155 |
demo.launch()
|
| 156 |
-
|
|
|
|
| 5 |
import os, glob, requests
|
| 6 |
from langchain.docstore.document import Document
|
| 7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
+
from langchain_community.vectorstores import FAISS
|
| 9 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 10 |
from docx import Document as DocxDocument
|
| 11 |
import gradio as gr
|
|
|
|
| 12 |
|
| 13 |
# -------------------------------
|
| 14 |
# 2. 環境變數與資料路徑
|
|
|
|
| 16 |
TXT_FOLDER = "./out_texts"
|
| 17 |
DB_PATH = "./faiss_db"
|
| 18 |
os.makedirs(DB_PATH, exist_ok=True)
|
| 19 |
+
os.makedirs(TXT_FOLDER, exist_ok=True)
|
| 20 |
|
| 21 |
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
| 22 |
if not HF_TOKEN:
|
|
|
|
| 50 |
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
| 51 |
|
| 52 |
# -------------------------------
|
| 53 |
+
# 4. 定義 REST API 呼叫函數
|
| 54 |
# -------------------------------
|
| 55 |
+
INFERENCE_MODEL = "google/flan-t5-large"
|
| 56 |
+
API_URL = f"https://api-inference.huggingface.co/models/{INFERENCE_MODEL}"
|
| 57 |
+
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
def call_hf_inference(prompt, max_new_tokens=512):
|
| 60 |
+
payload = {
|
| 61 |
+
"inputs": prompt,
|
| 62 |
+
"parameters": {"max_new_tokens": max_new_tokens}
|
| 63 |
+
}
|
| 64 |
+
try:
|
| 65 |
+
response = requests.post(API_URL, headers=HEADERS, json=payload, timeout=60)
|
| 66 |
+
response.raise_for_status()
|
| 67 |
+
data = response.json()
|
| 68 |
+
if isinstance(data, list) and "generated_text" in data[0]:
|
| 69 |
+
return data[0]["generated_text"]
|
| 70 |
+
elif isinstance(data, dict) and "error" in data:
|
| 71 |
+
return f"(生成失敗:{data['error']})"
|
| 72 |
+
else:
|
| 73 |
+
return str(data)
|
| 74 |
+
except Exception as e:
|
| 75 |
+
return f"(生成失敗:{e})"
|
| 76 |
+
|
| 77 |
+
# -------------------------------
|
| 78 |
+
# 5. 查詢 API 剩餘額度
|
| 79 |
+
# -------------------------------
|
| 80 |
+
def get_hf_rate_limit():
|
| 81 |
try:
|
| 82 |
+
r = requests.get("https://huggingface.co/api/whoami", headers=HEADERS)
|
| 83 |
r.raise_for_status()
|
| 84 |
data = r.json()
|
| 85 |
+
remaining = data.get("rate_limit", {}).get("remaining", "未知")
|
| 86 |
+
return f"本小時剩餘 API 次數:約 {remaining}"
|
|
|
|
| 87 |
except Exception:
|
| 88 |
+
return "無法取得 API 速率資訊"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
# -------------------------------
|
| 91 |
+
# 6. 生成文章(即時進度)
|
| 92 |
# -------------------------------
|
| 93 |
+
def generate_article_progress(query, segments=5):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
docx_file = "/tmp/generated_article.docx"
|
| 95 |
doc = DocxDocument()
|
| 96 |
doc.add_heading(query, level=1)
|
|
|
|
| 99 |
prompt = f"請依據下列主題生成段落:{query}\n\n每段約150-200字。"
|
| 100 |
|
| 101 |
for i in range(int(segments)):
|
| 102 |
+
paragraph = call_hf_inference(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
all_text.append(paragraph)
|
| 104 |
doc.add_paragraph(paragraph)
|
| 105 |
prompt = f"請接續上一段生成下一段:\n{paragraph}\n\n下一段:"
|
| 106 |
|
| 107 |
+
# yield 即時更新 Textbox
|
| 108 |
yield "\n\n".join(all_text), None
|
|
|
|
| 109 |
|
| 110 |
doc.save(docx_file)
|
| 111 |
rate_info = get_hf_rate_limit()
|
| 112 |
+
yield f"{rate_info}\n\n" + "\n\n".join(all_text), docx_file
|
|
|
|
|
|
|
| 113 |
|
| 114 |
# -------------------------------
|
| 115 |
+
# 7. Gradio 介面
|
| 116 |
# -------------------------------
|
| 117 |
with gr.Blocks() as demo:
|
| 118 |
gr.Markdown("# 佛教經論 RAG 系統 (HF API)")
|
| 119 |
+
gr.Markdown("使用 Hugging Face REST API + FAISS RAG,生成文章並提示 API 剩餘額度。")
|
| 120 |
|
| 121 |
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
|
| 122 |
segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
|
|
|
|
| 124 |
output_file = gr.File(label="下載 DOCX")
|
| 125 |
|
| 126 |
btn = gr.Button("生成文章")
|
|
|
|
|
|
|
| 127 |
btn.click(
|
| 128 |
+
generate_article_progress,
|
| 129 |
inputs=[query_input, segments_input],
|
| 130 |
outputs=[output_text, output_file]
|
| 131 |
)
|
| 132 |
|
| 133 |
# -------------------------------
|
| 134 |
+
# 8. 啟動 Gradio(Hugging Face Space 適用)
|
| 135 |
# -------------------------------
|
| 136 |
if __name__ == "__main__":
|
| 137 |
demo.launch()
|
|
|