|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from mmcv.ops import point_sample |
|
|
|
|
|
def get_uncertainty(mask_pred, labels): |
|
"""Estimate uncertainty based on pred logits. |
|
|
|
We estimate uncertainty as L1 distance between 0.0 and the logits |
|
prediction in 'mask_pred' for the foreground class in `classes`. |
|
|
|
Args: |
|
mask_pred (Tensor): mask predication logits, shape (num_rois, |
|
num_classes, mask_height, mask_width). |
|
|
|
labels (list[Tensor]): Either predicted or ground truth label for |
|
each predicted mask, of length num_rois. |
|
|
|
Returns: |
|
scores (Tensor): Uncertainty scores with the most uncertain |
|
locations having the highest uncertainty score, |
|
shape (num_rois, 1, mask_height, mask_width) |
|
""" |
|
if mask_pred.shape[1] == 1: |
|
gt_class_logits = mask_pred.clone() |
|
else: |
|
inds = torch.arange(mask_pred.shape[0], device=mask_pred.device) |
|
gt_class_logits = mask_pred[inds, labels].unsqueeze(1) |
|
return -torch.abs(gt_class_logits) |
|
|
|
|
|
def get_uncertain_point_coords_with_randomness( |
|
mask_pred, labels, num_points, oversample_ratio, importance_sample_ratio |
|
): |
|
"""Get ``num_points`` most uncertain points with random points during |
|
train. |
|
|
|
Sample points in [0, 1] x [0, 1] coordinate space based on their |
|
uncertainty. The uncertainties are calculated for each point using |
|
'get_uncertainty()' function that takes point's logit prediction as |
|
input. |
|
|
|
Args: |
|
mask_pred (Tensor): A tensor of shape (num_rois, num_classes, |
|
mask_height, mask_width) for class-specific or class-agnostic |
|
prediction. |
|
labels (list): The ground truth class for each instance. |
|
num_points (int): The number of points to sample. |
|
oversample_ratio (int): Oversampling parameter. |
|
importance_sample_ratio (float): Ratio of points that are sampled |
|
via importnace sampling. |
|
|
|
Returns: |
|
point_coords (Tensor): A tensor of shape (num_rois, num_points, 2) |
|
that contains the coordinates sampled points. |
|
""" |
|
assert oversample_ratio >= 1 |
|
assert 0 <= importance_sample_ratio <= 1 |
|
batch_size = mask_pred.shape[0] |
|
num_sampled = int(num_points * oversample_ratio) |
|
point_coords = torch.rand(batch_size, num_sampled, 2, device=mask_pred.device) |
|
point_logits = point_sample(mask_pred, point_coords) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
point_uncertainties = get_uncertainty(point_logits, labels) |
|
num_uncertain_points = int(importance_sample_ratio * num_points) |
|
num_random_points = num_points - num_uncertain_points |
|
idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1] |
|
shift = num_sampled * torch.arange(batch_size, dtype=torch.long, device=mask_pred.device) |
|
idx += shift[:, None] |
|
point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view(batch_size, num_uncertain_points, 2) |
|
if num_random_points > 0: |
|
rand_roi_coords = torch.rand(batch_size, num_random_points, 2, device=mask_pred.device) |
|
point_coords = torch.cat((point_coords, rand_roi_coords), dim=1) |
|
return point_coords |
|
|