Spaces:
Sleeping
Sleeping
Archivos necesarios
Browse files- app.py +348 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from html import escape
|
2 |
+
import requests
|
3 |
+
from io import BytesIO
|
4 |
+
import base64
|
5 |
+
from multiprocessing.dummy import Pool
|
6 |
+
from PIL import Image, ImageDraw
|
7 |
+
import streamlit as st
|
8 |
+
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
# from transformers import CLIPProcessor, CLIPModel
|
12 |
+
# from transformers import OwlViTProcessor, OwlViTForObjectDetection
|
13 |
+
# from transformers.image_utils import ImageFeatureExtractionMixin
|
14 |
+
import tokenizers
|
15 |
+
|
16 |
+
import pickle as pkl
|
17 |
+
|
18 |
+
# sketches
|
19 |
+
from streamlit_drawable_canvas import st_canvas
|
20 |
+
from PIL import Image, ImageOps
|
21 |
+
from torchvision import transforms
|
22 |
+
|
23 |
+
|
24 |
+
# model
|
25 |
+
import os
|
26 |
+
# No reconoce la carpeta que esta dos niveles abajo src
|
27 |
+
from src.model_LN_prompt import Model
|
28 |
+
from src.options import opts
|
29 |
+
|
30 |
+
|
31 |
+
DEBUG = False
|
32 |
+
if DEBUG:
|
33 |
+
MODEL = "vit-base-patch32"
|
34 |
+
else:
|
35 |
+
MODEL = "vit-large-patch14-336"
|
36 |
+
CLIP_MODEL = f"openai/clip-{MODEL}"
|
37 |
+
OWL_MODEL = f"google/owlvit-base-patch32"
|
38 |
+
|
39 |
+
if not DEBUG and torch.cuda.is_available():
|
40 |
+
device = torch.device("cuda")
|
41 |
+
else:
|
42 |
+
device = torch.device("cpu")
|
43 |
+
|
44 |
+
HEIGHT = 350
|
45 |
+
N_RESULTS = 5
|
46 |
+
|
47 |
+
from huggingface_hub import hf_hub_download,login
|
48 |
+
|
49 |
+
token = os.getenv("HUGGINGFACE_TOKEN")
|
50 |
+
|
51 |
+
# Autentica usando el token
|
52 |
+
login(token=token)
|
53 |
+
|
54 |
+
|
55 |
+
color = st.get_option("theme.primaryColor")
|
56 |
+
if color is None:
|
57 |
+
color = (0, 255, 0)
|
58 |
+
else:
|
59 |
+
color = tuple(int(color.lstrip("#")[i: i + 2], 16) for i in (0, 2, 4))
|
60 |
+
|
61 |
+
@st.cache_resource
|
62 |
+
def load():
|
63 |
+
path_images = 'data/doc_explore/DocExplore_images/'
|
64 |
+
path_model = hf_hub_download(repo_id="CHSTR/DocExplore", filename="epoch=16-mAP=0.66_triplet.ckpt")#"models/epoch=16-mAP=0.66_triplet.ckpt"
|
65 |
+
|
66 |
+
try:
|
67 |
+
model = Model().to(device)
|
68 |
+
model_checkpoint = torch.load(path_model) # 'model_60k_images_073.ckpt' -> modelo entrenado con 60k imagenes sin pidinet
|
69 |
+
model.load_state_dict(model_checkpoint['state_dict']) # 'modified_model_083.ckpt' -> modelo entrenado con 60k imagenes con pidinet
|
70 |
+
model.eval() # 'original_model_083.ckpt' -> modelo original entrenado con 60k imagenes con pidinet
|
71 |
+
print("Modelo cargado exitosamente")
|
72 |
+
except:
|
73 |
+
print("No se pudo cargar el modelo. Intenta nuevamente cambiando el argumento --model_type")
|
74 |
+
exit()
|
75 |
+
|
76 |
+
embeddings_file_1 = hf_hub_download(repo_id="CHSTR/DocExplore", filename="dino_flicker_docexplore_groundingDINO.pkl")
|
77 |
+
embeddings_file_0 = hf_hub_download(repo_id="CHSTR/DocExplore", filename="docexp_embeddings.pkl")
|
78 |
+
|
79 |
+
embeddings = {
|
80 |
+
0: pkl.load(open(embeddings_file_0, "rb")),
|
81 |
+
1: pkl.load(open(embeddings_file_1, "rb"))
|
82 |
+
}
|
83 |
+
|
84 |
+
# embeddings = {
|
85 |
+
# 0: pkl.load(open("docexp_embeddings.pkl", "rb")),
|
86 |
+
# 1: pkl.load(open("dino_flicker_docexplore_groundingDINO.pkl", "rb"))
|
87 |
+
# }
|
88 |
+
|
89 |
+
# Actualizar los paths de las imágenes en los embeddings
|
90 |
+
#for i in range(len(embeddings[0])):
|
91 |
+
# print(embeddings[0][i])
|
92 |
+
#embeddings[0][i] = (embeddings[0][i][0], path_images + "/".join(embeddings[0][i][1].split("/")[:-3]))
|
93 |
+
|
94 |
+
#for i in range(len(embeddings[1])):
|
95 |
+
# print(embeddings[1][i])
|
96 |
+
#embeddings[1][i] = (embeddings[1][i][0], path_images + "/".join(embeddings[1][i][1].split("/")[:-3]))
|
97 |
+
|
98 |
+
return model, path_images, embeddings
|
99 |
+
|
100 |
+
print("Cargando modelos...")
|
101 |
+
model, path_images, embeddings = load()
|
102 |
+
source = {0: "\nDocExplore SAM", 1: "\nDocExplore GroundingDINO"}
|
103 |
+
|
104 |
+
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 5)
|
105 |
+
|
106 |
+
dataset_transforms = transforms.Compose([
|
107 |
+
transforms.Resize((224, 224)),
|
108 |
+
transforms.ToTensor(),
|
109 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
110 |
+
])
|
111 |
+
|
112 |
+
|
113 |
+
def compute_text_embeddings(sketch):
|
114 |
+
with torch.no_grad():
|
115 |
+
sketch_feat = model(sketch.to(device), dtype='sketch')
|
116 |
+
return sketch_feat
|
117 |
+
# inputs = clip_processor(text=list_of_strings, return_tensors="pt", padding=True).to(
|
118 |
+
# device
|
119 |
+
# )
|
120 |
+
# with torch.no_grad():
|
121 |
+
# result = clip_model.get_text_features(**inputs).detach().cpu().numpy()
|
122 |
+
# return result / np.linalg.norm(result, axis=1, keepdims=True)
|
123 |
+
#return torch.randn(1, 768)
|
124 |
+
|
125 |
+
|
126 |
+
def image_search(query, corpus, n_results=N_RESULTS):
|
127 |
+
query_embedding = compute_text_embeddings(query)
|
128 |
+
corpus_id = 0 if corpus == "DocExplore SAM" else 1
|
129 |
+
image_features = torch.tensor([item[0] for item in embeddings[corpus_id]]).to(device)
|
130 |
+
bbox_of_images = torch.tensor([item[1] for item in embeddings[corpus_id]]).to(device)
|
131 |
+
label_of_images = torch.tensor([item[2] for item in embeddings[corpus_id]]).to(device)
|
132 |
+
dot_product = (image_features @ query_embedding.T)[:, 0]
|
133 |
+
_, max_indices = torch.topk(dot_product, n_results, dim=0, largest=True, sorted=True)
|
134 |
+
|
135 |
+
return [
|
136 |
+
(
|
137 |
+
path_images + "page" + str(i) + ".jpg",
|
138 |
+
)
|
139 |
+
for i in label_of_images[max_indices].cpu().numpy().tolist()
|
140 |
+
], bbox_of_images[max_indices], dot_product[max_indices]
|
141 |
+
|
142 |
+
|
143 |
+
def make_square(img, fill_color=(255, 255, 255)):
|
144 |
+
x, y = img.size
|
145 |
+
size = max(x, y)
|
146 |
+
new_img = Image.new("RGB", (x, y), fill_color)
|
147 |
+
new_img.paste(img)
|
148 |
+
return new_img, x, y
|
149 |
+
|
150 |
+
@st.cache_data
|
151 |
+
def get_images(paths):
|
152 |
+
def process_image(path):
|
153 |
+
return make_square(Image.open(path))
|
154 |
+
|
155 |
+
processed = Pool(N_RESULTS).map(process_image, paths)
|
156 |
+
imgs, xs, ys = [], [], []
|
157 |
+
for img, x, y in processed:
|
158 |
+
imgs.append(img)
|
159 |
+
xs.append(x)
|
160 |
+
ys.append(y)
|
161 |
+
return imgs, xs, ys
|
162 |
+
|
163 |
+
|
164 |
+
def keep_best_boxes(boxes, scores, score_threshold=0.1, max_iou=0.8):
|
165 |
+
candidates = []
|
166 |
+
for box, score in zip(boxes, scores):
|
167 |
+
box = [round(i, 0) for i in box.tolist()]
|
168 |
+
if score >= score_threshold:
|
169 |
+
candidates.append((box, float(score)))
|
170 |
+
|
171 |
+
to_ignore = set()
|
172 |
+
for i in range(len(candidates) - 1):
|
173 |
+
if i in to_ignore:
|
174 |
+
continue
|
175 |
+
for j in range(i + 1, len(candidates)):
|
176 |
+
if j in to_ignore:
|
177 |
+
continue
|
178 |
+
xmin1, ymin1, xmax1, ymax1 = candidates[i][0]
|
179 |
+
xmin2, ymin2, xmax2, ymax2 = candidates[j][0]
|
180 |
+
if xmax1 < xmin2 or xmax2 < xmin1 or ymax1 < ymin2 or ymax2 < ymin1:
|
181 |
+
continue
|
182 |
+
else:
|
183 |
+
xmin_inter, xmax_inter = sorted(
|
184 |
+
[xmin1, xmax1, xmin2, xmax2])[1:3]
|
185 |
+
ymin_inter, ymax_inter = sorted(
|
186 |
+
[ymin1, ymax1, ymin2, ymax2])[1:3]
|
187 |
+
area_inter = (xmax_inter - xmin_inter) * \
|
188 |
+
(ymax_inter - ymin_inter)
|
189 |
+
area1 = (xmax1 - xmin1) * (ymax1 - ymin1)
|
190 |
+
area2 = (xmax2 - xmin2) * (ymax2 - ymin2)
|
191 |
+
iou = area_inter / (area1 + area2 - area_inter)
|
192 |
+
if iou > max_iou:
|
193 |
+
if candidates[i][1] > candidates[j][1]:
|
194 |
+
to_ignore.add(j)
|
195 |
+
else:
|
196 |
+
to_ignore.add(i)
|
197 |
+
break
|
198 |
+
else:
|
199 |
+
if area_inter / area1 > 0.9:
|
200 |
+
if candidates[i][1] < 1.1 * candidates[j][1]:
|
201 |
+
to_ignore.add(i)
|
202 |
+
if area_inter / area2 > 0.9:
|
203 |
+
if 1.1 * candidates[i][1] > candidates[j][1]:
|
204 |
+
to_ignore.add(j)
|
205 |
+
return [candidates[i][0] for i in range(len(candidates)) if i not in to_ignore]
|
206 |
+
|
207 |
+
|
208 |
+
def convert_pil_to_base64(image):
|
209 |
+
img_buffer = BytesIO()
|
210 |
+
image.save(img_buffer, format="JPEG")
|
211 |
+
byte_data = img_buffer.getvalue()
|
212 |
+
base64_str = base64.b64encode(byte_data)
|
213 |
+
return base64_str
|
214 |
+
|
215 |
+
|
216 |
+
def draw_reshape_encode(img, boxes, x, y):
|
217 |
+
boxes = [boxes.tolist()]
|
218 |
+
image = img.copy()
|
219 |
+
draw = ImageDraw.Draw(image)
|
220 |
+
new_x, new_y = int(x * HEIGHT / y), HEIGHT
|
221 |
+
for box in boxes:
|
222 |
+
print("box:", box)
|
223 |
+
draw.rectangle(
|
224 |
+
[(box[0], box[1]), (box[2], box[3])], # (x_min, y_min, x_max, y_max)
|
225 |
+
outline=color, # Box color
|
226 |
+
width=10 # Box width
|
227 |
+
)
|
228 |
+
#if x > y:
|
229 |
+
# image = image.crop((0, (x - y) / 2, x, x - (x - y) / 2))
|
230 |
+
#else:
|
231 |
+
# image = image.crop(((y - x) / 2, 0, y - (y - x) / 2, y))
|
232 |
+
return convert_pil_to_base64(image.resize((new_x, new_y)))
|
233 |
+
|
234 |
+
|
235 |
+
def get_html(url_list, encoded_images):
|
236 |
+
html = "<div style='margin-top: 20px; max-width: 1200px; display: flex; flex-wrap: wrap; justify-content: space-evenly'>"
|
237 |
+
for i in range(len(url_list)):
|
238 |
+
title, encoded = url_list[i][0], encoded_images[i]
|
239 |
+
html = (
|
240 |
+
html
|
241 |
+
+ f"<img title='{escape(title)}' style='height: {HEIGHT}px; margin: 1px' src='data:image/jpeg;base64,{encoded.decode()}'>"
|
242 |
+
)
|
243 |
+
html += "</div>"
|
244 |
+
return html
|
245 |
+
|
246 |
+
|
247 |
+
description = """
|
248 |
+
# Sketch-based Detection
|
249 |
+
This app retrieves images from the [DocExplore](https://www.docexplore.eu/?lang=en) dataset based on a sketch query.
|
250 |
+
**Tip 1**: you can draw a sketch in the canvas.
|
251 |
+
**Tip 2**: you can change the size of the stroke with the slider.
|
252 |
+
The model utilized in this application is a DINOv2, which was trained in a self-supervised manner on the Flickr25k dataset.
|
253 |
+
"""
|
254 |
+
|
255 |
+
div_style = {
|
256 |
+
"display": "flex",
|
257 |
+
"justify-content": "center",
|
258 |
+
"flex-wrap": "wrap",
|
259 |
+
}
|
260 |
+
|
261 |
+
|
262 |
+
def main():
|
263 |
+
st.markdown(
|
264 |
+
"""
|
265 |
+
<style>
|
266 |
+
.block-container{
|
267 |
+
max-width: 1600px;
|
268 |
+
}
|
269 |
+
div.row-widget > div{
|
270 |
+
flex-direction: row;
|
271 |
+
display: flex;
|
272 |
+
justify-content: center;
|
273 |
+
}
|
274 |
+
div.row-widget.stRadio > div > label{
|
275 |
+
margin-left: 5px;
|
276 |
+
margin-right: 5px;
|
277 |
+
}
|
278 |
+
.row-widget {
|
279 |
+
margin-top: -25px;
|
280 |
+
}
|
281 |
+
section > div:first-child {
|
282 |
+
padding-top: 30px;
|
283 |
+
}
|
284 |
+
div.appview-container > section:first-child{
|
285 |
+
max-width: 320px;
|
286 |
+
}
|
287 |
+
#MainMenu {
|
288 |
+
visibility: hidden;
|
289 |
+
}
|
290 |
+
.stMarkdown {
|
291 |
+
display: grid;
|
292 |
+
place-items: center;
|
293 |
+
}
|
294 |
+
</style>
|
295 |
+
""",
|
296 |
+
unsafe_allow_html=True,
|
297 |
+
)
|
298 |
+
st.sidebar.markdown(description)
|
299 |
+
|
300 |
+
st.title("One-Shot Detection")
|
301 |
+
|
302 |
+
# Create two main columns
|
303 |
+
left_col, right_col = st.columns([0.2, 0.8]) # Adjust the weights as needed
|
304 |
+
|
305 |
+
with left_col:
|
306 |
+
# Canvas for drawing
|
307 |
+
canvas_result = st_canvas(
|
308 |
+
background_color="#eee",
|
309 |
+
stroke_width=stroke_width,
|
310 |
+
update_streamlit=True,
|
311 |
+
height=300,
|
312 |
+
width=300,
|
313 |
+
key="color_annotation_app",
|
314 |
+
)
|
315 |
+
|
316 |
+
# Input controls
|
317 |
+
query = [0]
|
318 |
+
corpus = st.radio("", ["DocExplore SAM", "DocExplore GroundingDINO"], index=0)
|
319 |
+
# score_threshold = st.slider(
|
320 |
+
# "Score threshold", min_value=0.01, max_value=1.0, value=0.5, step=0.01
|
321 |
+
# )
|
322 |
+
|
323 |
+
with right_col:
|
324 |
+
if canvas_result.image_data is not None:
|
325 |
+
draw = Image.fromarray(canvas_result.image_data.astype("uint8"))
|
326 |
+
draw = ImageOps.pad(draw.convert("RGB"), size=(224, 224))
|
327 |
+
draw.save("draw.jpg")
|
328 |
+
|
329 |
+
draw_tensor = transforms.ToTensor()(draw)
|
330 |
+
draw_tensor = transforms.Resize((224, 224))(draw_tensor)
|
331 |
+
draw_tensor = transforms.Normalize(
|
332 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
333 |
+
)(draw_tensor)
|
334 |
+
draw_tensor = draw_tensor.unsqueeze(0)
|
335 |
+
else:
|
336 |
+
return
|
337 |
+
|
338 |
+
if len(query) > 0:
|
339 |
+
retrieved, bbox_of_images, dot_product = image_search(draw_tensor, corpus)
|
340 |
+
imgs, xs, ys = get_images([x[0] for x in retrieved])
|
341 |
+
encoded_images = []
|
342 |
+
for image_idx in range(len(imgs)):
|
343 |
+
img0, x, y = imgs[image_idx], xs[image_idx], ys[image_idx]
|
344 |
+
encoded_images.append(draw_reshape_encode(img0, bbox_of_images[image_idx], x, y))
|
345 |
+
st.markdown(get_html(retrieved, encoded_images), unsafe_allow_html=True)
|
346 |
+
|
347 |
+
if __name__ == "__main__":
|
348 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.21.5
|
2 |
+
omegaconf==2.3.0
|
3 |
+
Pillow==11.0.0
|
4 |
+
pytorch_lightning==2.4.0
|
5 |
+
scipy==1.8.0
|
6 |
+
streamlit
|
7 |
+
streamlit_drawable_canvas
|
8 |
+
torchmetrics
|
9 |
+
torchmetrics
|
10 |
+
torchvision
|