Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# | |
# This source code is licensed under the Apache License, Version 2.0 | |
# found in the LICENSE file in the root directory of this source tree. | |
from enum import Enum | |
from typing import Union | |
import torch | |
import torch.nn as nn | |
from .backbones import _make_dinov2_model | |
from .utils import _DINOV2_BASE_URL, _make_dinov2_model_name | |
class Weights(Enum): | |
IMAGENET1K = "IMAGENET1K" | |
def _make_dinov2_linear_classification_head( | |
*, | |
arch_name: str = "vit_large", | |
patch_size: int = 14, | |
embed_dim: int = 1024, | |
layers: int = 4, | |
pretrained: bool = True, | |
weights: Union[Weights, str] = Weights.IMAGENET1K, | |
num_register_tokens: int = 0, | |
**kwargs, | |
): | |
if layers not in (1, 4): | |
raise AssertionError(f"Unsupported number of layers: {layers}") | |
if isinstance(weights, str): | |
try: | |
weights = Weights[weights] | |
except KeyError: | |
raise AssertionError(f"Unsupported weights: {weights}") | |
linear_head = nn.Linear((1 + layers) * embed_dim, 1_000) | |
if pretrained: | |
model_base_name = _make_dinov2_model_name(arch_name, patch_size) | |
model_full_name = _make_dinov2_model_name(arch_name, patch_size, num_register_tokens) | |
layers_str = str(layers) if layers == 4 else "" | |
url = _DINOV2_BASE_URL + f"/{model_base_name}/{model_full_name}_linear{layers_str}_head.pth" | |
state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu") | |
linear_head.load_state_dict(state_dict, strict=True) | |
return linear_head | |
class _LinearClassifierWrapper(nn.Module): | |
def __init__(self, *, backbone: nn.Module, linear_head: nn.Module, layers: int = 4): | |
super().__init__() | |
self.backbone = backbone | |
self.linear_head = linear_head | |
self.layers = layers | |
def forward(self, x): | |
if self.layers == 1: | |
x = self.backbone.forward_features(x) | |
cls_token = x["x_norm_clstoken"] | |
patch_tokens = x["x_norm_patchtokens"] | |
# fmt: off | |
linear_input = torch.cat([ | |
cls_token, | |
patch_tokens.mean(dim=1), | |
], dim=1) | |
# fmt: on | |
elif self.layers == 4: | |
x = self.backbone.get_intermediate_layers(x, n=4, return_class_token=True) | |
# fmt: off | |
linear_input = torch.cat([ | |
x[0][1], | |
x[1][1], | |
x[2][1], | |
x[3][1], | |
x[3][0].mean(dim=1), | |
], dim=1) | |
# fmt: on | |
else: | |
assert False, f"Unsupported number of layers: {self.layers}" | |
return self.linear_head(linear_input) | |
def _make_dinov2_linear_classifier( | |
*, | |
arch_name: str = "vit_large", | |
layers: int = 4, | |
pretrained: bool = True, | |
weights: Union[Weights, str] = Weights.IMAGENET1K, | |
num_register_tokens: int = 0, | |
interpolate_antialias: bool = False, | |
interpolate_offset: float = 0.1, | |
**kwargs, | |
): | |
backbone = _make_dinov2_model( | |
arch_name=arch_name, | |
pretrained=pretrained, | |
num_register_tokens=num_register_tokens, | |
interpolate_antialias=interpolate_antialias, | |
interpolate_offset=interpolate_offset, | |
**kwargs, | |
) | |
embed_dim = backbone.embed_dim | |
patch_size = backbone.patch_size | |
linear_head = _make_dinov2_linear_classification_head( | |
arch_name=arch_name, | |
patch_size=patch_size, | |
embed_dim=embed_dim, | |
layers=layers, | |
pretrained=pretrained, | |
weights=weights, | |
num_register_tokens=num_register_tokens, | |
) | |
return _LinearClassifierWrapper(backbone=backbone, linear_head=linear_head, layers=layers) | |
def dinov2_vits14_lc( | |
*, | |
layers: int = 4, | |
pretrained: bool = True, | |
weights: Union[Weights, str] = Weights.IMAGENET1K, | |
**kwargs, | |
): | |
""" | |
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-S/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. | |
""" | |
return _make_dinov2_linear_classifier( | |
arch_name="vit_small", | |
layers=layers, | |
pretrained=pretrained, | |
weights=weights, | |
**kwargs, | |
) | |
def dinov2_vitb14_lc( | |
*, | |
layers: int = 4, | |
pretrained: bool = True, | |
weights: Union[Weights, str] = Weights.IMAGENET1K, | |
**kwargs, | |
): | |
""" | |
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-B/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. | |
""" | |
return _make_dinov2_linear_classifier( | |
arch_name="vit_base", | |
layers=layers, | |
pretrained=pretrained, | |
weights=weights, | |
**kwargs, | |
) | |
def dinov2_vitl14_lc( | |
*, | |
layers: int = 4, | |
pretrained: bool = True, | |
weights: Union[Weights, str] = Weights.IMAGENET1K, | |
**kwargs, | |
): | |
""" | |
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-L/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. | |
""" | |
return _make_dinov2_linear_classifier( | |
arch_name="vit_large", | |
layers=layers, | |
pretrained=pretrained, | |
weights=weights, | |
**kwargs, | |
) | |
def dinov2_vitg14_lc( | |
*, | |
layers: int = 4, | |
pretrained: bool = True, | |
weights: Union[Weights, str] = Weights.IMAGENET1K, | |
**kwargs, | |
): | |
""" | |
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-g/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. | |
""" | |
return _make_dinov2_linear_classifier( | |
arch_name="vit_giant2", | |
layers=layers, | |
ffn_layer="swiglufused", | |
pretrained=pretrained, | |
weights=weights, | |
**kwargs, | |
) | |
def dinov2_vits14_reg_lc( | |
*, layers: int = 4, pretrained: bool = True, weights: Union[Weights, str] = Weights.IMAGENET1K, **kwargs | |
): | |
""" | |
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-S/14 backbone with registers (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. | |
""" | |
return _make_dinov2_linear_classifier( | |
arch_name="vit_small", | |
layers=layers, | |
pretrained=pretrained, | |
weights=weights, | |
num_register_tokens=4, | |
interpolate_antialias=True, | |
interpolate_offset=0.0, | |
**kwargs, | |
) | |
def dinov2_vitb14_reg_lc( | |
*, layers: int = 4, pretrained: bool = True, weights: Union[Weights, str] = Weights.IMAGENET1K, **kwargs | |
): | |
""" | |
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-B/14 backbone with registers (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. | |
""" | |
return _make_dinov2_linear_classifier( | |
arch_name="vit_base", | |
layers=layers, | |
pretrained=pretrained, | |
weights=weights, | |
num_register_tokens=4, | |
interpolate_antialias=True, | |
interpolate_offset=0.0, | |
**kwargs, | |
) | |
def dinov2_vitl14_reg_lc( | |
*, layers: int = 4, pretrained: bool = True, weights: Union[Weights, str] = Weights.IMAGENET1K, **kwargs | |
): | |
""" | |
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-L/14 backbone with registers (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. | |
""" | |
return _make_dinov2_linear_classifier( | |
arch_name="vit_large", | |
layers=layers, | |
pretrained=pretrained, | |
weights=weights, | |
num_register_tokens=4, | |
interpolate_antialias=True, | |
interpolate_offset=0.0, | |
**kwargs, | |
) | |
def dinov2_vitg14_reg_lc( | |
*, layers: int = 4, pretrained: bool = True, weights: Union[Weights, str] = Weights.IMAGENET1K, **kwargs | |
): | |
""" | |
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-g/14 backbone with registers (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. | |
""" | |
return _make_dinov2_linear_classifier( | |
arch_name="vit_giant2", | |
layers=layers, | |
ffn_layer="swiglufused", | |
pretrained=pretrained, | |
weights=weights, | |
num_register_tokens=4, | |
interpolate_antialias=True, | |
interpolate_offset=0.0, | |
**kwargs, | |
) | |