CHSTR's picture
Upload src
265ae36 verified
raw
history blame
8.58 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
import os
import random
import re
import socket
from typing import Dict, List
import torch
import torch.distributed as dist
_LOCAL_RANK = -1
_LOCAL_WORLD_SIZE = -1
def is_enabled() -> bool:
"""
Returns:
True if distributed training is enabled
"""
return dist.is_available() and dist.is_initialized()
def get_global_size() -> int:
"""
Returns:
The number of processes in the process group
"""
return dist.get_world_size() if is_enabled() else 1
def get_global_rank() -> int:
"""
Returns:
The rank of the current process within the global process group.
"""
return dist.get_rank() if is_enabled() else 0
def get_local_rank() -> int:
"""
Returns:
The rank of the current process within the local (per-machine) process group.
"""
if not is_enabled():
return 0
assert 0 <= _LOCAL_RANK < _LOCAL_WORLD_SIZE
return _LOCAL_RANK
def get_local_size() -> int:
"""
Returns:
The size of the per-machine process group,
i.e. the number of processes per machine.
"""
if not is_enabled():
return 1
assert 0 <= _LOCAL_RANK < _LOCAL_WORLD_SIZE
return _LOCAL_WORLD_SIZE
def is_main_process() -> bool:
"""
Returns:
True if the current process is the main one.
"""
return get_global_rank() == 0
def _restrict_print_to_main_process() -> None:
"""
This function disables printing when not in the main process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_main_process() or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def _get_master_port(seed: int = 0) -> int:
MIN_MASTER_PORT, MAX_MASTER_PORT = (20_000, 60_000)
master_port_str = os.environ.get("MASTER_PORT")
if master_port_str is None:
rng = random.Random(seed)
return rng.randint(MIN_MASTER_PORT, MAX_MASTER_PORT)
return int(master_port_str)
def _get_available_port() -> int:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
# A "" host address means INADDR_ANY i.e. binding to all interfaces.
# Note this is not compatible with IPv6.
s.bind(("", 0))
port = s.getsockname()[1]
return port
_TORCH_DISTRIBUTED_ENV_VARS = (
"MASTER_ADDR",
"MASTER_PORT",
"RANK",
"WORLD_SIZE",
"LOCAL_RANK",
"LOCAL_WORLD_SIZE",
)
def _collect_env_vars() -> Dict[str, str]:
return {env_var: os.environ[env_var] for env_var in _TORCH_DISTRIBUTED_ENV_VARS if env_var in os.environ}
def _is_slurm_job_process() -> bool:
return "SLURM_JOB_ID" in os.environ
def _parse_slurm_node_list(s: str) -> List[str]:
nodes = []
# Extract "hostname", "hostname[1-2,3,4-5]," substrings
p = re.compile(r"(([^\[]+)(?:\[([^\]]+)\])?),?")
for m in p.finditer(s):
prefix, suffixes = s[m.start(2) : m.end(2)], s[m.start(3) : m.end(3)]
for suffix in suffixes.split(","):
span = suffix.split("-")
if len(span) == 1:
nodes.append(prefix + suffix)
else:
width = len(span[0])
start, end = int(span[0]), int(span[1]) + 1
nodes.extend([prefix + f"{i:0{width}}" for i in range(start, end)])
return nodes
def _check_env_variable(key: str, new_value: str):
# Only check for difference with preset environment variables
if key in os.environ and os.environ[key] != new_value:
raise RuntimeError(f"Cannot export environment variables as {key} is already set")
class _TorchDistributedEnvironment:
def __init__(self):
self.master_addr = "127.0.0.1"
self.master_port = 0
self.rank = -1
self.world_size = -1
self.local_rank = -1
self.local_world_size = -1
if _is_slurm_job_process():
return self._set_from_slurm_env()
env_vars = _collect_env_vars()
if not env_vars:
# Environment is not set
pass
elif len(env_vars) == len(_TORCH_DISTRIBUTED_ENV_VARS):
# Environment is fully set
return self._set_from_preset_env()
else:
# Environment is partially set
collected_env_vars = ", ".join(env_vars.keys())
raise RuntimeError(f"Partially set environment: {collected_env_vars}")
if torch.cuda.device_count() > 0:
return self._set_from_local()
raise RuntimeError("Can't initialize PyTorch distributed environment")
# Slurm job created with sbatch, submitit, etc...
def _set_from_slurm_env(self):
# logger.info("Initialization from Slurm environment")
job_id = int(os.environ["SLURM_JOB_ID"])
node_count = int(os.environ["SLURM_JOB_NUM_NODES"])
nodes = _parse_slurm_node_list(os.environ["SLURM_JOB_NODELIST"])
assert len(nodes) == node_count
self.master_addr = nodes[0]
self.master_port = _get_master_port(seed=job_id)
self.rank = int(os.environ["SLURM_PROCID"])
self.world_size = int(os.environ["SLURM_NTASKS"])
assert self.rank < self.world_size
self.local_rank = int(os.environ["SLURM_LOCALID"])
self.local_world_size = self.world_size // node_count
assert self.local_rank < self.local_world_size
# Single node job with preset environment (i.e. torchrun)
def _set_from_preset_env(self):
# logger.info("Initialization from preset environment")
self.master_addr = os.environ["MASTER_ADDR"]
self.master_port = os.environ["MASTER_PORT"]
self.rank = int(os.environ["RANK"])
self.world_size = int(os.environ["WORLD_SIZE"])
assert self.rank < self.world_size
self.local_rank = int(os.environ["LOCAL_RANK"])
self.local_world_size = int(os.environ["LOCAL_WORLD_SIZE"])
assert self.local_rank < self.local_world_size
# Single node and GPU job (i.e. local script run)
def _set_from_local(self):
# logger.info("Initialization from local")
self.master_addr = "127.0.0.1"
self.master_port = _get_available_port()
self.rank = 0
self.world_size = 1
self.local_rank = 0
self.local_world_size = 1
def export(self, *, overwrite: bool) -> "_TorchDistributedEnvironment":
# See the "Environment variable initialization" section from
# https://pytorch.org/docs/stable/distributed.html for the complete list of
# environment variables required for the env:// initialization method.
env_vars = {
"MASTER_ADDR": self.master_addr,
"MASTER_PORT": str(self.master_port),
"RANK": str(self.rank),
"WORLD_SIZE": str(self.world_size),
"LOCAL_RANK": str(self.local_rank),
"LOCAL_WORLD_SIZE": str(self.local_world_size),
}
if not overwrite:
for k, v in env_vars.items():
_check_env_variable(k, v)
os.environ.update(env_vars)
return self
def enable(*, set_cuda_current_device: bool = True, overwrite: bool = False, allow_nccl_timeout: bool = False):
"""Enable distributed mode
Args:
set_cuda_current_device: If True, call torch.cuda.set_device() to set the
current PyTorch CUDA device to the one matching the local rank.
overwrite: If True, overwrites already set variables. Else fails.
"""
global _LOCAL_RANK, _LOCAL_WORLD_SIZE
if _LOCAL_RANK >= 0 or _LOCAL_WORLD_SIZE >= 0:
raise RuntimeError("Distributed mode has already been enabled")
torch_env = _TorchDistributedEnvironment()
torch_env.export(overwrite=overwrite)
if set_cuda_current_device:
torch.cuda.set_device(torch_env.local_rank)
if allow_nccl_timeout:
# This allows to use torch distributed timeout in a NCCL backend
key, value = "NCCL_ASYNC_ERROR_HANDLING", "1"
if not overwrite:
_check_env_variable(key, value)
os.environ[key] = value
dist.init_process_group(backend="nccl")
dist.barrier()
# Finalize setup
_LOCAL_RANK = torch_env.local_rank
_LOCAL_WORLD_SIZE = torch_env.local_world_size
_restrict_print_to_main_process()