Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# | |
# This source code is licensed under the Apache License, Version 2.0 | |
# found in the LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.distributed as dist | |
import torch.nn.functional as F | |
from torch import nn | |
class DINOLoss(nn.Module): | |
def __init__( | |
self, | |
out_dim, | |
student_temp=0.1, | |
center_momentum=0.9, | |
): | |
super().__init__() | |
self.student_temp = student_temp | |
self.center_momentum = center_momentum | |
self.register_buffer("center", torch.zeros(1, out_dim)) | |
self.updated = True | |
self.reduce_handle = None | |
self.len_teacher_output = None | |
self.async_batch_center = None | |
def softmax_center_teacher(self, teacher_output, teacher_temp): | |
self.apply_center_update() | |
# teacher centering and sharpening | |
return F.softmax((teacher_output - self.center) / teacher_temp, dim=-1) | |
def sinkhorn_knopp_teacher(self, teacher_output, teacher_temp, n_iterations=3): | |
teacher_output = teacher_output.float() | |
world_size = dist.get_world_size() if dist.is_initialized() else 1 | |
Q = torch.exp(teacher_output / teacher_temp).t() # Q is K-by-B for consistency with notations from our paper | |
B = Q.shape[1] * world_size # number of samples to assign | |
K = Q.shape[0] # how many prototypes | |
# make the matrix sums to 1 | |
sum_Q = torch.sum(Q) | |
if dist.is_initialized(): | |
dist.all_reduce(sum_Q) | |
Q /= sum_Q | |
for it in range(n_iterations): | |
# normalize each row: total weight per prototype must be 1/K | |
sum_of_rows = torch.sum(Q, dim=1, keepdim=True) | |
if dist.is_initialized(): | |
dist.all_reduce(sum_of_rows) | |
Q /= sum_of_rows | |
Q /= K | |
# normalize each column: total weight per sample must be 1/B | |
Q /= torch.sum(Q, dim=0, keepdim=True) | |
Q /= B | |
Q *= B # the columns must sum to 1 so that Q is an assignment | |
return Q.t() | |
def forward(self, student_output_list, teacher_out_softmaxed_centered_list): | |
""" | |
Cross-entropy between softmax outputs of the teacher and student networks. | |
""" | |
# TODO: Use cross_entropy_distribution here | |
total_loss = 0 | |
for s in student_output_list: | |
lsm = F.log_softmax(s / self.student_temp, dim=-1) | |
for t in teacher_out_softmaxed_centered_list: | |
loss = torch.sum(t * lsm, dim=-1) | |
total_loss -= loss.mean() | |
return total_loss | |
def update_center(self, teacher_output): | |
self.reduce_center_update(teacher_output) | |
def reduce_center_update(self, teacher_output): | |
self.updated = False | |
self.len_teacher_output = len(teacher_output) | |
self.async_batch_center = torch.sum(teacher_output, dim=0, keepdim=True) | |
if dist.is_initialized(): | |
self.reduce_handle = dist.all_reduce(self.async_batch_center, async_op=True) | |
def apply_center_update(self): | |
if self.updated is False: | |
world_size = dist.get_world_size() if dist.is_initialized() else 1 | |
if self.reduce_handle is not None: | |
self.reduce_handle.wait() | |
_t = self.async_batch_center / (self.len_teacher_output * world_size) | |
self.center = self.center * self.center_momentum + _t * (1 - self.center_momentum) | |
self.updated = True | |