Spaces:
Sleeping
Sleeping
CHEONMA010
commited on
Commit
•
30d84d7
1
Parent(s):
b56e28a
Upload 4 files
Browse files- app.py +65 -0
- scripts/RRDBNet_arch.py +94 -0
- scripts/__pycache__/RRDBNet_arch.cpython-311.pyc +0 -0
- scripts/models/RRDB_ESRGAN_x4.pth +3 -0
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import sys
|
6 |
+
import os
|
7 |
+
import RRDBNet_arch as arch
|
8 |
+
# Add the `scripts/` folder to the system path
|
9 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), 'scripts'))
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
# Path to the pretrained model
|
15 |
+
model_path = os.path.join(os.path.dirname(__file__), 'models', 'RRDB_ESRGAN_x4.pth')
|
16 |
+
|
17 |
+
# Load ESRGAN model
|
18 |
+
device = torch.device('cpu') #'cuda' if using GPU
|
19 |
+
model = arch.RRDBNet(3, 3, 64, 23, gc=32)
|
20 |
+
model.load_state_dict(torch.load(model_path, map_location=device), strict=True)
|
21 |
+
model.eval()
|
22 |
+
model = model.to(device)
|
23 |
+
|
24 |
+
|
25 |
+
def upscale_image(image):
|
26 |
+
img = np.array(image) / 255.0
|
27 |
+
img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
|
28 |
+
img_LR = img.unsqueeze(0).to(device)
|
29 |
+
|
30 |
+
with torch.no_grad():
|
31 |
+
output = model(img_LR).data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
32 |
+
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
|
33 |
+
output = (output * 255.0).round().astype(np.uint8)
|
34 |
+
return Image.fromarray(output)
|
35 |
+
|
36 |
+
# Gradio interface
|
37 |
+
def gradio_interface(image):
|
38 |
+
try:
|
39 |
+
|
40 |
+
if image is None:
|
41 |
+
raise ValueError("No image uploaded. Please upload an image to upscale.")
|
42 |
+
|
43 |
+
|
44 |
+
upscaled_image = upscale_image(image)
|
45 |
+
original_size = image.size
|
46 |
+
upscaled_size = upscaled_image.size
|
47 |
+
|
48 |
+
return image, upscaled_image, f"Original Size: {original_size[0]}x{original_size[1]}", f"Upscaled Size: {upscaled_size[0]}x{upscaled_size[1]}"
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
|
52 |
+
return None, None, "Error", str(e)
|
53 |
+
|
54 |
+
|
55 |
+
gr_interface = gr.Interface(
|
56 |
+
fn=gradio_interface,
|
57 |
+
inputs=gr.Image(type="pil"),
|
58 |
+
outputs=[gr.Image(), gr.Image(), gr.Text(), gr.Text()],
|
59 |
+
title="ESRGAN Image Upscaler",
|
60 |
+
description="Upload an image to upscale it using ESRGAN."
|
61 |
+
)
|
62 |
+
|
63 |
+
if __name__ == '__main__':
|
64 |
+
|
65 |
+
gr_interface.launch()
|
scripts/RRDBNet_arch.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright [2021] Xintao Wang
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
import functools
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
|
22 |
+
|
23 |
+
def make_layer(block, n_layers):
|
24 |
+
layers = []
|
25 |
+
for _ in range(n_layers):
|
26 |
+
layers.append(block())
|
27 |
+
return nn.Sequential(*layers)
|
28 |
+
|
29 |
+
|
30 |
+
class ResidualDenseBlock_5C(nn.Module):
|
31 |
+
def __init__(self, nf=64, gc=32, bias=True):
|
32 |
+
super(ResidualDenseBlock_5C, self).__init__()
|
33 |
+
# gc: growth channel, i.e. intermediate channels
|
34 |
+
self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
|
35 |
+
self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
|
36 |
+
self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
|
37 |
+
self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
|
38 |
+
self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
|
39 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
40 |
+
|
41 |
+
# initialization
|
42 |
+
# mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
x1 = self.lrelu(self.conv1(x))
|
46 |
+
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
47 |
+
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
48 |
+
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
49 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
50 |
+
return x5 * 0.2 + x
|
51 |
+
|
52 |
+
|
53 |
+
class RRDB(nn.Module):
|
54 |
+
'''Residual in Residual Dense Block'''
|
55 |
+
|
56 |
+
def __init__(self, nf, gc=32):
|
57 |
+
super(RRDB, self).__init__()
|
58 |
+
self.RDB1 = ResidualDenseBlock_5C(nf, gc)
|
59 |
+
self.RDB2 = ResidualDenseBlock_5C(nf, gc)
|
60 |
+
self.RDB3 = ResidualDenseBlock_5C(nf, gc)
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
out = self.RDB1(x)
|
64 |
+
out = self.RDB2(out)
|
65 |
+
out = self.RDB3(out)
|
66 |
+
return out * 0.2 + x
|
67 |
+
|
68 |
+
|
69 |
+
class RRDBNet(nn.Module):
|
70 |
+
def __init__(self, in_nc, out_nc, nf, nb, gc=32):
|
71 |
+
super(RRDBNet, self).__init__()
|
72 |
+
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
|
73 |
+
|
74 |
+
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
75 |
+
self.RRDB_trunk = make_layer(RRDB_block_f, nb)
|
76 |
+
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
77 |
+
#### upsampling
|
78 |
+
self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
79 |
+
self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
80 |
+
self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
81 |
+
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
|
82 |
+
|
83 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
fea = self.conv_first(x)
|
87 |
+
trunk = self.trunk_conv(self.RRDB_trunk(fea))
|
88 |
+
fea = fea + trunk
|
89 |
+
|
90 |
+
fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
|
91 |
+
fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
|
92 |
+
out = self.conv_last(self.lrelu(self.HRconv(fea)))
|
93 |
+
|
94 |
+
return out
|
scripts/__pycache__/RRDBNet_arch.cpython-311.pyc
ADDED
Binary file (6.62 kB). View file
|
|
scripts/models/RRDB_ESRGAN_x4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65fece06e1ccb48853242aa972bdf00ad07a7dd8938d2dcbdf4221b59f6372ce
|
3 |
+
size 66929193
|