XAITK-Gradio / app.py
emilyveenhuis's picture
Modified layout with bigger saliency result
97bf1d0 verified
raw
history blame
28.8 kB
## Gradio Example
# This app makes use of the saliency generation example found in the base ``xaitk-saliency`` repo [here](https://github.com/XAITK/xaitk-saliency/blob/master/examples/OcclusionSaliency.ipynb), and explores integrating ``xaitk-saliency`` with ``Gradio`` to create an interactive interface for computing saliency maps.
import os
import sys
import PIL.Image
import matplotlib.pyplot as plt # type: ignore
import urllib
import numpy as np
from git import Repo
import gradio as gr
from gradio import ( # type: ignore
AnnotatedImage, Button, Column, Image, Label, # type: ignore
Number, Plot, Row, TabItem, Tab, Tabs, # type: ignore
Checkbox, Dropdown, Slider, Textbox # type: ignore
)
# State variables for Image Classification
from gr_component_state import ( # type: ignore
img_cls_model_name, img_cls_saliency_algo_name, window_size_state, stride_state, debiased_state,
)
# State functions for Image Classification
from gr_component_state import ( # type: ignore
select_img_cls_model, select_img_cls_saliency_algo, enter_window_size, enter_stride, check_debiased
)
# State variables for Object Detection
from gr_component_state import ( # type: ignore
obj_det_model_name, obj_det_saliency_algo_name, occlusion_grid_state
)
# State functions for Object Detection
from gr_component_state import ( # type: ignore
select_obj_det_model, select_obj_det_saliency_algo, enter_occlusion_grid_size
)
# Common state variables
from gr_component_state import ( # type: ignore
threads_state, num_masks_state, spatial_res_state, p1_state, seed_state
)
# Common state functions
from gr_component_state import ( # type: ignore
select_threads, enter_num_masks, enter_spatial_res, select_p1, enter_seed
)
import torch
import torchvision.transforms as transforms
import torchvision.models as models
import torch.nn.functional
from torch.utils.data import Dataset, DataLoader
from smqtk_detection.impls.detect_image_objects.resnet_frcnn import ResNetFRCNN
from xaitk_saliency.impls.gen_image_classifier_blackbox_sal.slidingwindow import SlidingWindowStack
from xaitk_saliency.impls.gen_image_classifier_blackbox_sal.rise import RISEStack
from xaitk_saliency.impls.gen_object_detector_blackbox_sal.drise import RandomGridStack, DRISEStack
from xaitk_saliency.interfaces.gen_object_detector_blackbox_sal import GenerateObjectDetectorBlackboxSaliency
from smqtk_detection.interfaces.detect_image_objects import DetectImageObjects
from smqtk_classifier.interfaces.classify_image import ClassifyImage
from smqtk_image_io import AxisAlignedBoundingBox
from typing import Iterable, Dict, Hashable, Tuple
os.makedirs('data', exist_ok=True)
test_image_filename = 'data/catdog.jpg'
urllib.request.urlretrieve('https://farm1.staticflickr.com/74/202734059_fcce636dcd_z.jpg', test_image_filename)
plt.figure(figsize=(12, 8))
plt.axis('off')
_ = plt.imshow(PIL.Image.open(test_image_filename))
CUDA_AVAILABLE = torch.cuda.is_available()
model_input_size = (224, 224)
model_mean = [0.485, 0.456, 0.406]
model_loader = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize(model_input_size),
transforms.ToTensor(),
transforms.Normalize(
mean=model_mean,
std=[0.229, 0.224, 0.225]
),
])
def get_sal_labels(classes_file, custom_categories_list=None):
if not os.path.isfile(classes_file):
url = "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt"
_ = urllib.request.urlretrieve(url, classes_file)
f = open(classes_file, "r")
categories = [s.strip() for s in f.readlines()]
if not custom_categories_list == None:
sal_class_labels = custom_categories_list
else:
sal_class_labels = categories
sal_class_idxs = [categories.index(lbl) for lbl in sal_class_labels]
return sal_class_labels, sal_class_idxs
def get_det_sal_labels(classes_file, custom_categories_list=None):
if not os.path.isfile(classes_file):
url = "https://raw.githubusercontent.com/matlab-deep-learning/Object-Detection-Using-Pretrained-YOLO-v2/main/%2Bhelper/coco-classes.txt"
_ = urllib.request.urlretrieve(url, classes_file)
f = open(classes_file, "r")
categories = [s.strip() for s in f.readlines()]
if not custom_categories_list == None:
sal_obj_labels = custom_categories_list
else:
sal_obj_labels = categories
sal_obj_idxs = [categories.index(lbl) for lbl in sal_obj_labels]
return sal_obj_labels, sal_obj_idxs
def get_model(model_choice):
if model_choice == "ResNet-18":
model = models.resnet18(pretrained=True)
else:
model = models.resnet50(pretrained=True)
model = model.eval()
if CUDA_AVAILABLE:
model = model.cuda()
return model
def get_detection_model(model_choice):
if model_choice == "Faster-RCNN":
blackbox_detector = ResNetFRCNN(
box_thresh=0.05,
img_batch_size=1,
use_cuda=CUDA_AVAILABLE
)
elif model_choice == "TPH-YOLOv5":
dest = os.path.join(data_path, 'tph-yolov5')
if not os.path.isdir(dest):
Repo.clone_from("https://github.com/cv516Buaa/tph-yolov5.git", dest)
sys.path.insert(1, dest)
# imports from TPH-YOLOv5 github repo
from utils.augmentations import letterbox
from models.experimental import attempt_load
from utils.datasets import LoadImages
from utils.general import non_max_suppression, scale_coords
class YOLOVisdrone(DetectImageObjects):
def __init__(
self,
weights,
img_size=(640, 640),
batch_size=1,
conf_thresh=0.5,
iou_thresh=0.5,
use_cuda=False,
num_workers=4
):
"""
img_size: size of image input to model
batch_size: number of images to input as once
conf_thresh: confidence threshold for detection results
iou_thresh: IOU threshold for NMS
use_cuda: use CUDA device to compute detections
num_workers: number of worker processes to use for data loading
"""
self.img_size = np.array(img_size)
if use_cuda:
self.device = torch.device('cuda:0')
else:
self.device = torch.device('cpu')
self.model = attempt_load(weights).to(self.device)
self.model = self.model.eval()
self.conf_thresh = conf_thresh
self.iou_thresh = iou_thresh
self.batch_size = batch_size
self.num_workers = num_workers
with torch.no_grad():
_ = self.model(torch.zeros(1, 3, *self.img_size).to(self.device)) # warm up
def detect_objects(
self,
imgIter: Iterable[np.ndarray]
) -> Iterable[Iterable[Tuple[AxisAlignedBoundingBox, Dict[Hashable, float]]]]:
# pytorch DataLoader for passed images
dataset = DataLoader(
pytorchDataset(
imgIter,
img_size=self.img_size,
),
batch_size=self.batch_size,
num_workers=self.num_workers
)
# list of AxisAlignedBoundingBox detections to return
preds = []
for i, (img_batch, hs, ws) in enumerate(dataset):
# load batch and normalize
img_batch = img_batch.to(self.device)
img_batch = img_batch.float()
img_batch /= 255
# pass through model
with torch.no_grad():
pred_batch = self.model(img_batch)[0]
# perform NMS and scale detections to original image dimensions
for img_pred, h, w in zip(pred_batch, hs, ws):
img_pred = non_max_suppression(
img_pred[None], conf_thres=self.conf_thresh, iou_thres=self.iou_thresh)[0]
img_pred[:, :4] = scale_coords(
img_batch.shape[2:], img_pred[:, :4], (h, w))
img_pred = img_pred.cpu().numpy()
preds.append(pred_mat_to_list(img_pred))
return preds
# requried by interface
def get_config(self):
return {}
class pytorchDataset(Dataset):
"""
pyTorch DataLoader for images. Resizes image to model input size and
returns original height and width as well.
"""
def __init__(self, imgs, img_size=[640, 640]):
self.imgs = list(imgs)
self.img_size = img_size
def __getitem__(self, idx):
img = self.imgs[idx]
h = img.shape[0]
w = img.shape[1]
img = letterbox(img, new_shape=self.img_size, auto=True)[0]
img = img.transpose((2, 0, 1))
img = np.ascontiguousarray(img)
return img, h, w
def __len__(self):
return len(self.imgs)
def pred_mat_to_list(preds):
"""
Convert prediction matrix model output to AxisAlignedBoundingBox format.
"""
pred_list = []
for pred in preds:
bbox = AxisAlignedBoundingBox(pred[0:2], pred[2:4])
CLASS_NAMES = ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck',
'tricycle', 'awning-tricycle', 'bus', 'motor']
score_dict = dict.fromkeys(CLASS_NAMES, 0)
score_dict[CLASS_NAMES[int(pred[5])]] = pred[4]
pred_list.append((bbox, score_dict))
return pred_list
model_file = os.path.join(data_path,'tph-yolov5.pth')
if not os.path.isfile(model_file):
urllib.request.urlretrieve('https://data.kitware.com/api/v1/item/623880d04acac99f429fe3bf/download', model_file)
blackbox_detector = YOLOVisdrone(
weights=model_file,
img_size=(1536,1536),
batch_size=1,
use_cuda=CUDA_AVAILABLE,
num_workers=4,
conf_thresh=0.1,
iou_thresh=0.5
)
else:
raise Exception("Unknown Input")
return blackbox_detector
def get_saliency_algo(sal_choice):
if sal_choice == "RISE":
gen_sal = RISEStack(
n=num_masks_state[-1],
s=spatial_res_state[-1],
p1=p1_state[-1],
seed=seed_state[-1],
threads=threads_state[-1],
debiased=debiased_state[-1]
)
elif sal_choice == "SlidingWindowStack":
gen_sal = SlidingWindowStack(
window_size=eval(window_size_state[-1]),
stride=eval(stride_state[-1]),
threads=threads_state[-1]
)
else:
raise Exception("Unknown Input")
return gen_sal
def get_detection_saliency_algo(sal_choice):
if sal_choice == "RandomGridStack":
gen_sal = RandomGridStack(
n=num_masks_state[-1],
s=eval(occlusion_grid_state[-1]),
p1=p1_state[-1],
threads=threads_state[-1],
seed=seed_state[-1],
)
elif sal_choice == "DRISE":
gen_sal = DRISEStack(
n=num_masks_state[-1],
s=spatial_res_state[-1],
p1=p1_state[-1],
seed=seed_state[-1],
threads=threads_state[-1]
)
else:
raise Exception("Unknown Input")
return gen_sal
data_path = "./data"
if not os.path.exists(data_path):
os.makedirs(data_path)
# Setup imagenet classes and ClassifyImage for generating classification saliency
classes_file = os.path.join(data_path,"imagenet_classes.txt")
sal_class_labels, sal_class_idxs = get_sal_labels(classes_file)
class TorchResnet (ClassifyImage):
modified_class_labels = []
def get_labels(self):
return self.modified_class_labels
def set_labels(self, class_labels):
self.modified_class_labels = [lbl for lbl in class_labels]
@torch.no_grad()
def classify_images(self, image_iter):
# Input may either be an NDaray, or some arbitrary iterable of NDarray images.
model = get_model(img_cls_model_name[-1])
for img in image_iter:
image_tensor = model_loader(img).unsqueeze(0)
if CUDA_AVAILABLE:
image_tensor = image_tensor.cuda()
feature_vec = model(image_tensor)
# Converting feature extractor output to probabilities.
class_conf = torch.nn.functional.softmax(feature_vec, dim=1).cpu().detach().numpy().squeeze()
# Only return the confidences for the focus classes
yield dict(zip(sal_class_labels, class_conf[sal_class_idxs]))
def get_config(self):
# Required by a parent class.
return {}
blackbox_classifier, blackbox_fill = TorchResnet(), np.uint8(np.asarray(model_mean) * 255).tolist()
# Setup COCO object classes for generating detection saliency
obj_classes_file = os.path.join(data_path,"coco_classes.txt")
sal_obj_labels, sal_obj_idxs = get_det_sal_labels(obj_classes_file)
# Modify textbox parameters based on chosen saliency algorithm
def show_textbox_parameters(choice):
if choice == 'RISE':
return Textbox(visible=False), Textbox(visible=False), Textbox(visible=True), Textbox(visible=True), Textbox(visible=True)
elif choice == 'SlidingWindowStack':
return Textbox(visible=True), Textbox(visible=True), Textbox(visible=False), Textbox(visible=False), Textbox(visible=False)
elif choice == "RandomGridStack":
return Textbox(visible=True), Textbox(visible=False), Textbox(visible=True), Textbox(visible=True)
elif choice == "DRISE":
return Textbox(visible=True), Textbox(visible=True), Textbox(visible=True), Textbox(visible=False)
else:
raise Exception("Unknown Input")
# Modify slider parameters based on chosen saliency algorithm
def show_slider_parameters(choice):
if choice == 'RISE' or choice == 'RandomGridStack' or choice == 'DRISE':
return Slider(visible=True), Slider(visible=True)
elif choice == 'SlidingWindowStack':
return Slider(visible=True), Slider(visible=False)
else:
raise Exception("Unknown Input")
# Modify checkbox parameters based on chosen saliency algorithm
def show_debiased_checkbox(choice):
if choice == 'RISE':
return Checkbox(visible=True)
elif choice == 'SlidingWindowStack' or choice == 'RandomGridStack' or choice == 'DRISE':
return Checkbox(visible=False)
else:
raise Exception("Unknown Input")
# Function that is called after clicking the "Classify" button in the demo
def predict(x,top_n_classes):
image_tensor = model_loader(x).unsqueeze(0)
if CUDA_AVAILABLE:
image_tensor = image_tensor.cuda()
model = get_model(img_cls_model_name[-1])
feature_vec = model(image_tensor)
class_conf = torch.nn.functional.softmax(feature_vec, dim=1).cpu().detach().numpy().squeeze()
labels = list(zip(sal_class_labels, class_conf[sal_class_idxs].tolist()))
final_labels = dict(sorted(labels, key=lambda t: t[1],reverse=True)[:top_n_classes])
return final_labels, Dropdown(choices=list(final_labels))
# Interpretation function for image classification that implements the selected saliency algorithm and generates the class-wise saliency map visualizations
def interpretation_function(image: np.ndarray,
labels: dict,
nth_class: str,
img_alpha,
sal_alpha,
sal_range_min,
sal_range_max):
sal_generator = get_saliency_algo(img_cls_saliency_algo_name[-1])
sal_generator.fill = blackbox_fill
labels_list = labels.keys()
blackbox_classifier.set_labels(labels_list)
sal_maps = sal_generator(image, blackbox_classifier)
nth_class_index = blackbox_classifier.get_labels().index(nth_class)
fig = visualize_saliency_plot(image,
sal_maps[nth_class_index,:,:],
img_alpha,
sal_alpha,
sal_range_min,
sal_range_max)
return fig
def visualize_saliency_plot(image: np.ndarray,
class_sal_map: np.ndarray,
img_alpha,
sal_alpha,
sal_range_min,
sal_range_max):
colorbar_kwargs = {
"fraction": 0.046*(image.shape[0]/image.shape[1]),
"pad": 0.04,
}
fig = plt.figure()
plt.imshow(image, alpha=img_alpha)
plt.imshow(
np.clip(class_sal_map, sal_range_min, sal_range_max),
cmap='jet', alpha=sal_alpha
)
plt.clim(sal_range_min, sal_range_max)
plt.colorbar(**colorbar_kwargs)
plt.title(f"Saliency Map")
plt.axis('off')
plt.close(fig)
return fig
# Generate top-n object detect predictions on the input image
def run_detect(input_img: np.ndarray, num_detections: int):
detect_model = get_detection_model(obj_det_model_name[-1])
preds = list(list(detect_model([input_img]))[0])
n_preds = len(preds)
n_classes = len(preds[0][1])
bboxes = np.empty((n_preds, 4), dtype=np.float32)
scores = np.empty((n_preds, n_classes), dtype=np.float32)
max_scores_index = np.empty((n_preds, 1), dtype=int)
labels = None
final_bbox = []
final_label = []
for i, (bbox, score_dict) in enumerate(preds):
bboxes[i] = (*bbox.min_vertex, *bbox.max_vertex)
score_list = list(score_dict.values())
scores[i] = score_list
max_scores_index[i] = score_list.index(max(score_list))
if labels is None:
labels = list(score_dict.keys())
label_name = str(labels[int(max_scores_index[i,0])])
conf_score = str(round(score_list[int(max_scores_index[i,0])],4))
label_with_score = str(i) + " : "+ label_name + " - " + conf_score
final_label.append(label_with_score)
bboxes_list = bboxes[:,:].astype(int).tolist()
return (input_img, list(zip([f for f in bboxes_list], [l for l in final_label]))[:num_detections]), Dropdown(choices=[l for l in final_label][:num_detections])
# Run saliency algorithm on the object detect predictions and generate corresponding visualizations
def run_detect_saliency(input_img: np.ndarray,
num_predictions,
obj_label,
img_alpha,
sal_alpha,
sal_range_min,
sal_range_max):
detect_model = get_detection_model(obj_det_model_name[-1])
img_preds = list(list(detect_model([input_img]))[0])
ref_preds = img_preds[:int(num_predictions)]
ref_bboxes = []
ref_scores = []
for det in ref_preds:
bbox = det[0]
ref_bboxes.append([
*bbox.min_vertex,
*bbox.max_vertex,
])
score_dict = det[1]
ref_scores.append(list(score_dict.values()))
ref_bboxes = np.array(ref_bboxes)
ref_scores = np.array(ref_scores)
sal_generator = get_detection_saliency_algo(obj_det_saliency_algo_name[-1])
sal_generator.fill = blackbox_fill
sal_maps = gen_det_saliency(input_img, detect_model, sal_generator,ref_bboxes,ref_scores)
nth_class_index = int(obj_label.split(' : ')[0])
scores = sal_maps[nth_class_index,:,:]
fig = visualize_saliency_plot(input_img,
sal_maps[nth_class_index,:,:],
img_alpha,
sal_alpha,
sal_range_min,
sal_range_max)
scores = np.clip(scores, sal_range_min, sal_range_max)
return fig
def gen_det_saliency(input_img: np.ndarray,
blackbox_detector: DetectImageObjects,
sal_map_generator: GenerateObjectDetectorBlackboxSaliency,
ref_bboxes: np.ndarray,
ref_scores: np.ndarray
):
sal_maps = sal_map_generator.generate(
input_img,
ref_bboxes,
ref_scores,
blackbox_detector,
)
return sal_maps
with gr.Blocks() as xaitk_demo:
with Tab("Image Classification"):
with Row():
with Column():
drop_list = Dropdown(value=img_cls_model_name[-1],choices=["ResNet-18","ResNet-50"],label="Choose Model",interactive="True")
input_img = Image(label="Input Image")
num_classes = Slider(value=2,label="Top-N Class Labels", interactive=True,visible=True)
classify = Button("Classify")
class_label = Label(label="Predictions")
class_name = Dropdown(label="Class to Compute Saliency",interactive=True,visible=True)
with Column():
drop_list_sal = Dropdown(value=img_cls_saliency_algo_name[-1],choices=["SlidingWindowStack","RISE"],label="Choose Saliency Algorithm",interactive="True")
window_size = Textbox(value=window_size_state[-1],label="Tuple of window size values (Press Enter to submit the input)",interactive=True,visible=False)
masks = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
stride = Textbox(value=stride_state[-1],label="Tuple of stride values (Press Enter to submit the input)" ,interactive=True,visible=False)
spatial_res = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=True,precision=0)
debiased = Checkbox(value=debiased_state[-1],label="Debiased", interactive=True, visible=True)
seed = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
p1 = Slider(value=p1_state[-1],label="P1",interactive=True,visible=True, minimum=0,maximum=1,step=0.1)
threads = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=True)
with Tabs():
with TabItem("Display Interpretation with Plot"):
interpretation_plot = Plot()
with Row():
img_alpha = Slider(value=0.7,label="Image Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
sal_alpha = Slider(value=0.3,label="Saliency Map Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
with Row():
min_sal_range = Slider(value=0,label="Minimum Saliency Value",interactive=True,visible=True,minimum=-1,maximum=1,step=0.05)
max_sal_range = Slider(value=1,label="Maximum Saliency Value",interactive=True,visible=True,minimum=-1,maximum=1,step=0.05)
generate_saliency = Button("Generate Saliency")
with Tab("Object Detection"):
with Row():
with Column():
drop_list_detect_model = Dropdown(value=obj_det_model_name[-1],choices=["Faster-RCNN", "TPH-YOLOv5"],label="Choose Model",interactive="True")
input_img_detect = Image(label="Input Image")
num_detections = Slider(value=2,label="Top-N Detections", interactive=True,visible=True)
detection = Button("Run Detection Algorithm")
detect_label = AnnotatedImage(label="Detections")
class_name_det = Dropdown(label="Detection to Compute Saliency",interactive=True,visible=True)
with Column():
drop_list_detect_sal = Dropdown(value=obj_det_saliency_algo_name[-1],choices=["RandomGridStack","DRISE"],label="Choose Saliency Algorithm",interactive="True")
masks_detect = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
occlusion_grid_size = Textbox(value=occlusion_grid_state[-1],label="Tuple of occlusion grid size values (Press Enter to submit the input)",interactive=True,visible=False)
spatial_res_detect = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=True,precision=0)
seed_detect = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
p1_detect = Slider(value=p1_state[-1],label="P1",interactive=True,visible=True, minimum=0,maximum=1,step=0.1)
threads_detect = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=True)
with Tabs():
with TabItem("Display saliency map plot"):
det_saliency_plot = Plot()
with Row():
img_alpha_det = Slider(value=0.7,label="Image Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
sal_alpha_det = Slider(value=0.3,label="Saliency Map Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
with Row():
min_sal_range_det = Slider(value=0.95,label="Minimum Saliency Value",interactive=True,visible=True,minimum=0.80,maximum=1,step=0.05)
max_sal_range_det = Slider(value=1,label="Maximum Saliency Value",interactive=True,visible=True,minimum=0.80,maximum=1,step=0.05)
generate_det_saliency = Button("Generate Saliency")
# Image Classification dropdown list event listeners
drop_list.select(select_img_cls_model,drop_list,drop_list)
drop_list_sal.select(select_img_cls_saliency_algo,drop_list_sal,drop_list_sal)
drop_list_sal.change(show_textbox_parameters,drop_list_sal,[window_size,stride,masks,spatial_res,seed])
drop_list_sal.change(show_slider_parameters,drop_list_sal,[threads,p1])
drop_list_sal.change(show_debiased_checkbox,drop_list_sal,debiased)
# Image Classification textbox, slider and checkbox event listeners
window_size.submit(enter_window_size,window_size,window_size)
masks.submit(enter_num_masks,masks,masks)
stride.submit(enter_stride, stride, stride)
spatial_res.submit(enter_spatial_res, spatial_res, spatial_res)
seed.submit(enter_seed, seed, seed)
threads.change(select_threads, threads, threads)
p1.change(select_p1, p1, p1)
debiased.change(check_debiased,debiased,debiased)
# Image Classification prediction and saliency generation event listeners
classify.click(predict, [input_img, num_classes], [class_label,class_name])
generate_saliency.click(interpretation_function, [input_img, class_label, class_name, img_alpha, sal_alpha, min_sal_range, max_sal_range], [interpretation_plot])
# Object Detection dropdown list event listeners
drop_list_detect_model.select(select_obj_det_model,drop_list_detect_model,drop_list_detect_model)
drop_list_detect_sal.select(select_obj_det_saliency_algo,drop_list_detect_sal,drop_list_detect_sal)
drop_list_detect_sal.change(show_slider_parameters,drop_list_detect_sal,[threads_detect,p1_detect])
drop_list_detect_sal.change(show_textbox_parameters,drop_list_detect_sal,[masks_detect,spatial_res_detect,seed_detect,occlusion_grid_size])
# Object detection textbox and slider event listeners
masks_detect.submit(enter_num_masks,masks_detect,masks_detect)
occlusion_grid_size.submit(enter_occlusion_grid_size,occlusion_grid_size,occlusion_grid_size)
spatial_res_detect.submit(enter_spatial_res, spatial_res_detect, spatial_res_detect)
seed_detect.submit(enter_seed, seed_detect, seed_detect)
threads_detect.change(select_threads, threads_detect, threads_detect)
p1_detect.change(select_p1, p1_detect, p1_detect)
# Object detection prediction, class selection and saliency generation event listeners
detection.click(run_detect, [input_img_detect, num_detections], [detect_label,class_name_det])
generate_det_saliency.click(run_detect_saliency,[input_img_detect, num_detections, class_name_det, img_alpha_det, sal_alpha_det, min_sal_range_det, max_sal_range_det],det_saliency_plot)
xaitk_demo.launch(show_error=True)