Spaces:
Running
Running
| # MetaDiscovery Agent - LOC API with Enhanced Completeness and Quality Analysis | |
| import requests | |
| import pandas as pd | |
| import numpy as np | |
| import streamlit as st | |
| import matplotlib | |
| import plotly.express as px | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| # Custom CSS for white background, styled sidebar, banner, and dark grey font | |
| st.markdown(""" | |
| <style> | |
| .main { | |
| background-color: #D3D3D3 !important; | |
| color: #1A1A1A!important; | |
| } | |
| .block-container { | |
| background-color: gray !important; | |
| color: #808080!important; | |
| } | |
| section[data-testid="stSidebar"] > div:first-child { | |
| background-color: #808080 !important; | |
| padding: 1rem; | |
| border-radius: 0.5rem; | |
| color: #808080 !important; | |
| } | |
| .stMarkdown, .stTextInput, .stDataFrame { | |
| color: #1A1A1A!important; | |
| } | |
| img.banner { | |
| width: 100%; | |
| border-radius: 12px; | |
| margin-bottom: 1rem; | |
| } | |
| .stAlert { | |
| background-color: #f0f0f5 !important; | |
| color: #333333 !important; | |
| padding: 1.25rem !important; | |
| font-size: 1rem !important; | |
| border-radius: 0.5rem !important; | |
| box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05) !important; | |
| } | |
| header[data-testid="stHeader"] { | |
| background-color: gray !important; | |
| } | |
| section[data-testid="stSidebar"] > div:first-child { | |
| background-color: #1A1A1A !important; | |
| color: #FFFFFF !important; | |
| padding: 2rem 1.5rem 1.5rem 1.5rem !important; | |
| border-radius: 12px; | |
| box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08); | |
| font-size: 0.95rem; | |
| line-height: 1.5; | |
| } | |
| .block-container { | |
| background-color: gray !important; | |
| color: #1A1A1A !important; | |
| padding-left: 2rem !important; | |
| padding-right: 2rem !important; | |
| box-shadow: none !important; | |
| } | |
| html, body, [data-testid="stApp"] { | |
| background-color: #1A1A1A !important; | |
| } | |
| .custom-table { | |
| background-color: #D3D3D3; | |
| color: #1A1A1A; | |
| font-family: monospace; | |
| padding: 1rem; | |
| border-radius: 8px; | |
| overflow-x: auto; | |
| white-space: pre; | |
| border: 1px solid #ccc; | |
| } | |
| .sidebar-stats { | |
| color: lightgray !important; | |
| font-size: 1.1rem !important; | |
| margin-top: 1.5rem; | |
| font-weight: 600; | |
| } | |
| .sidebar-contrast-block { | |
| background-color: #2b2b2b !important; /* Slightly lighter than #1A1A1A */ | |
| padding: 1.25rem; | |
| border-radius: 10px; | |
| margin-top: 1.5rem; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # OPTION 1: Use an image from a URL for the banner | |
| st.image("https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/7ThcAOjbuM8ajrP85bGs4.jpeg", use_container_width=True) | |
| # Streamlit app header | |
| st.title("MetaDiscovery Agent for Library of Congress Collections") | |
| st.markdown(""" | |
| This tool connects to the LOC API, retrieves metadata from a selected collection, and performs | |
| an analysis of metadata completeness, suggests enhancements, and identifies authority gaps. | |
| """) | |
| # Updated collection URLs using the correct LOC API format | |
| collections = { | |
| "American Revolutionary War Maps": "american+revolutionary+war+maps", | |
| "Civil War Maps": "civil+war+maps", | |
| "Women's Suffrage": "women+suffrage", | |
| "World War I Posters": "world+war+posters" | |
| } | |
| # Sidebar for selecting collection | |
| #st.sidebar.markdown("## Settings") | |
| # Create empty metadata_df variable to ensure it exists before checking | |
| metadata_df = pd.DataFrame() | |
| # Add a key to the selectbox to ensure it refreshes properly | |
| selected = st.sidebar.selectbox("Select a collection", list(collections.keys()), key="collection_selector") | |
| search_query = collections[selected] | |
| # Define the collection URL | |
| collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json" | |
| # Create an empty placeholder for Quick Stats | |
| stats_placeholder = st.sidebar.empty() | |
| # Create placeholder for Field Completeness Breakdown | |
| completeness_placeholder = st.sidebar.empty() | |
| # Helpful Resources (styled and moved below dropdown) | |
| st.sidebar.markdown("### Helpful Resources", unsafe_allow_html=True) | |
| # Helpful Resources styled section | |
| # 3. Helpful Resources Section (Fixed, under Completeness) | |
| st.sidebar.markdown(""" | |
| <style> | |
| .sidebar-section h3 { | |
| color: lightgray !important; | |
| font-size: 1.1rem !important; | |
| margin-top: 1.5rem; | |
| } | |
| .sidebar-links a { | |
| color: lightgray !important; | |
| text-decoration: none !important; | |
| } | |
| .sidebar-links a:hover { | |
| text-decoration: underline !important; | |
| } | |
| </style> | |
| <div class="sidebar-section"> | |
| <h3>🔗 Helpful Resources</h3> | |
| <div class="sidebar-links"> | |
| <ul style='padding-left: 1em'> | |
| <li><a href="https://www.loc.gov/apis/" target="_blank">LOC API Info</a></li> | |
| <li><a href="https://www.loc.gov/" target="_blank">Library of Congress Homepage</a></li> | |
| <li><a href="https://www.loc.gov/collections/" target="_blank">LOC Digital Collections</a></li> | |
| <li><a href="https://www.loc.gov/marc/" target="_blank">MARC Metadata Standards</a></li> | |
| <li><a href="https://labs.loc.gov/about-labs/digital-strategy/" target="_blank">LOC Digital Strategy</a></li> | |
| </ul> | |
| </div> | |
| </div> | |
| """, unsafe_allow_html=True) | |
| # Add a fetch button to make the action explicit | |
| fetch_data = True | |
| if fetch_data: | |
| # Display a loading spinner while fetching data | |
| with st.spinner(f"Fetching data for {selected}..."): | |
| # Fetch data from LOC API with spoofed User-Agent header | |
| headers = { | |
| "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 Chrome/110.0.0.0 Safari/537.36" | |
| } | |
| try: | |
| response = requests.get(collection_url, headers=headers) | |
| response.raise_for_status() | |
| data = response.json() | |
| if "results" in data: | |
| records = data.get("results", []) | |
| elif "items" in data: | |
| records = data.get("items", []) | |
| else: | |
| records = [] | |
| st.error("Unexpected API response structure. No records found.") | |
| st.write(f"Retrieved {len(records)} records") | |
| except requests.exceptions.RequestException as e: | |
| st.error(f"API Connection Error: {e}") | |
| records = [] | |
| except ValueError: | |
| st.error("Failed to parse API response as JSON") | |
| records = [] | |
| # Extract selected metadata fields | |
| items = [] | |
| for record in records: | |
| if isinstance(record, dict): | |
| description = record.get("description", "") | |
| if isinstance(description, list): | |
| description = " ".join([str(d) for d in description]) | |
| item = { | |
| "id": record.get("id", ""), | |
| "title": record.get("title", ""), | |
| "date": record.get("date", ""), | |
| "subject": ", ".join(record.get("subject", [])) if isinstance(record.get("subject"), list) else record.get("subject", ""), | |
| "creator": record.get("creator", ""), | |
| "description": description | |
| } | |
| if not item["title"] and "item" in record: | |
| item["title"] = record.get("item", {}).get("title", "") | |
| if not item["date"] and "item" in record: | |
| item["date"] = record.get("item", {}).get("date", "") | |
| items.append(item) | |
| metadata_df = pd.DataFrame(items) | |
| # Define custom completeness check | |
| def is_incomplete(value): | |
| return pd.isna(value) or value in ["", "N/A", "null", None] | |
| if not metadata_df.empty: | |
| # Incomplete record detection | |
| incomplete_mask = metadata_df.apply(lambda row: row.map(is_incomplete), axis=1).any(axis=1) | |
| incomplete_count = incomplete_mask.sum() | |
| # Overall completeness | |
| total_fields = metadata_df.size | |
| filled_fields = metadata_df.apply(lambda row: row.map(lambda x: not is_incomplete(x)), axis=1).sum().sum() | |
| overall_percent = (filled_fields / total_fields) * 100 | |
| # Field-by-field completeness | |
| completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100 | |
| completeness_table = completeness.round(1).to_frame(name="Completeness (%)") | |
| # Render stats summary in sidebar | |
| stats_html = f""" | |
| <div class="sidebar-stats"> | |
| <h3 style="color: lightgray;">Quick Stats</h3> | |
| <p style="color:lightgray;">Total Records: <b>{len(metadata_df)}</b></p> | |
| <p style="color:lightgray;">Incomplete Records: <b>{incomplete_count}</b></p> | |
| <p style="color:lightgray;">Overall Metadata Completeness: <b>{overall_percent:.1f}%</b></p> | |
| </div> | |
| """ | |
| stats_placeholder.markdown(stats_html, unsafe_allow_html=True) | |
| # Utility functions for deeper metadata quality analysis | |
| def is_incomplete(value): | |
| return pd.isna(value) or value in ["", "N/A", "null", None] | |
| def is_valid_date(value): | |
| try: | |
| pd.to_datetime(value) | |
| return True | |
| except: | |
| return False | |
| if not metadata_df.empty: | |
| st.subheader("Retrieved Metadata Sample") | |
| st.dataframe(metadata_df.head()) | |
| # Metadata completeness analysis (enhanced) | |
| st.subheader("Metadata Completeness Analysis") | |
| # Create the completeness table | |
| completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100 | |
| completeness_df = pd.DataFrame({ | |
| "Field": completeness.index, | |
| "Completeness (%)": completeness.values | |
| }) | |
| completeness_table = completeness_df.set_index("Field") | |
| # FILL THE PLACEHOLDER created earlier | |
| with completeness_placeholder: | |
| st.markdown(""" | |
| <div style=' | |
| background-color: #2e2e2e; | |
| padding: 1.2rem; | |
| border-radius: 10px; | |
| margin-top: 1.5rem; | |
| color: lightgray; | |
| '> | |
| <h4 style='margin-bottom: 1rem;'>Field Completeness Breakdown</h4> | |
| """, unsafe_allow_html=True) | |
| st.dataframe( | |
| completeness_table.style.background_gradient(cmap="Greens").format("{:.1f}%"), | |
| use_container_width=True, | |
| height=240 | |
| ) | |
| st.markdown("</div>", unsafe_allow_html=True) | |
| # Then continue plotting in main panel | |
| fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field") | |
| st.plotly_chart(fig) | |
| # Identify incomplete records | |
| incomplete_mask = metadata_df.map(is_incomplete).any(axis=1) | |
| incomplete_records = metadata_df[incomplete_mask] | |
| st.subheader("✨ Suggested Metadata Enhancements") | |
| incomplete_with_desc = incomplete_records[incomplete_records['description'].notnull()] | |
| reference_df = metadata_df[metadata_df['subject'].notnull() & metadata_df['description'].notnull()] | |
| tfidf = TfidfVectorizer(stop_words='english') | |
| if len(incomplete_with_desc) > 1 and len(reference_df) > 1: | |
| try: | |
| suggestions = [] | |
| tfidf_matrix = tfidf.fit_transform(reference_df['description']) | |
| for idx, row in incomplete_with_desc.iterrows(): | |
| if pd.isna(row['subject']) and pd.notna(row['description']): | |
| desc_vec = tfidf.transform([str(row['description'])]) | |
| sims = cosine_similarity(desc_vec, tfidf_matrix).flatten() | |
| top_idx = sims.argmax() | |
| suggested_subject = reference_df.iloc[top_idx]['subject'] | |
| if pd.notna(suggested_subject) and suggested_subject: | |
| suggestions.append((row['title'], suggested_subject)) | |
| if suggestions: | |
| suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"]) | |
| st.markdown("<div class='custom-table'>" + suggestions_df.to_markdown(index=False) + "</div>", unsafe_allow_html=True) | |
| else: | |
| st.markdown(""" | |
| <div class='custom-table'> | |
| <b>No metadata enhancement suggestions available.</b> | |
| </div> | |
| """, unsafe_allow_html=True) | |
| except Exception as e: | |
| st.error(f"Error generating metadata suggestions: {e}") | |
| else: | |
| st.markdown(""" | |
| <div class='custom-table'> | |
| <b>Not enough descriptive data to generate metadata suggestions.</b> | |
| </div> | |
| """, unsafe_allow_html=True) | |
| else: | |
| st.warning("⚠️ No metadata records found for this collection. Try selecting another one.") | |