Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- LoughranMcDonald_MasterDictionary_2020.csv +0 -0
- app.py +104 -0
- requirements.txt +6 -0
LoughranMcDonald_MasterDictionary_2020.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
import pandas as pd
|
5 |
+
from openprompt.plms import load_plm
|
6 |
+
from openprompt import PromptDataLoader
|
7 |
+
from openprompt.prompts import ManualVerbalizer
|
8 |
+
from openprompt.prompts import ManualTemplate
|
9 |
+
from openprompt.data_utils import InputExample
|
10 |
+
from openprompt import PromptForClassification
|
11 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
12 |
+
|
13 |
+
def readLMwords():
|
14 |
+
alldata = pd.read_csv("LoughranMcDonald_MasterDictionary_2020.csv")
|
15 |
+
positive = list(alldata[alldata["Positive"]!=0]["Word"].str.lower())
|
16 |
+
negative = list(alldata[alldata["Negative"]!=0]["Word"].str.lower())
|
17 |
+
uncertainty = list(alldata[alldata["Uncertainty"]!=0]["Word"].str.lower())
|
18 |
+
return positive,negative,uncertainty
|
19 |
+
|
20 |
+
|
21 |
+
def sentiment_analysis(sentence, model_name):
|
22 |
+
model_name = "HYCCC/"+model_name
|
23 |
+
raw_sentences = sentence.strip().split('\n')
|
24 |
+
template = '{"placeholder":"text_a"} Shares are {"mask"}.'
|
25 |
+
classes = ['positive', 'neutral', 'negative']
|
26 |
+
positive,negative,neutral = readLMwords()
|
27 |
+
label_words = {
|
28 |
+
"positive": positive,
|
29 |
+
"neutral": neutral,
|
30 |
+
"negative": negative,
|
31 |
+
}
|
32 |
+
type_dic = {
|
33 |
+
"HYCCC/RoBERTa_Chinese_AnnualReport_tuned":"roberta",
|
34 |
+
"HYCCC/RoBERTa_Chinese_FinancialNews_tuned":"roberta",
|
35 |
+
"HYCCC/RoBERTa_English_AnnualReport_tuned":"roberta",
|
36 |
+
"HYCCC/RoBERTa_English_FinancialNews_tuned":"roberta",
|
37 |
+
}
|
38 |
+
|
39 |
+
if 'Chinese' in model_name:
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
|
41 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
|
42 |
+
|
43 |
+
translated_tokens = model.generate(
|
44 |
+
**tokenizer(raw_sentences, return_tensors="pt", padding=True)
|
45 |
+
)
|
46 |
+
sentences_translated = []
|
47 |
+
for t in translated_tokens:
|
48 |
+
sentences_translated.append(tokenizer.decode(t, skip_special_tokens=True))
|
49 |
+
sentences = sentences_translated
|
50 |
+
else:
|
51 |
+
sentences = raw_sentences
|
52 |
+
|
53 |
+
testdata = []
|
54 |
+
for i,sentence in enumerate(sentences):
|
55 |
+
testdata.append(InputExample(guid=i,text_a=sentence,label=0))
|
56 |
+
|
57 |
+
plm, tokenizer, model_config, WrapperClass = load_plm(type_dic[model_name], model_name)
|
58 |
+
|
59 |
+
promptTemplate = ManualTemplate(
|
60 |
+
text = template,
|
61 |
+
tokenizer = tokenizer,
|
62 |
+
)
|
63 |
+
promptVerbalizer = ManualVerbalizer(
|
64 |
+
classes = classes,
|
65 |
+
label_words = label_words,
|
66 |
+
tokenizer = tokenizer,
|
67 |
+
)
|
68 |
+
test_dataloader = PromptDataLoader(
|
69 |
+
dataset = testdata,
|
70 |
+
tokenizer = tokenizer,
|
71 |
+
template = promptTemplate,
|
72 |
+
tokenizer_wrapper_class = WrapperClass,
|
73 |
+
batch_size = 4,
|
74 |
+
max_seq_length = 512,
|
75 |
+
)
|
76 |
+
prompt_model = PromptForClassification(
|
77 |
+
plm=plm,
|
78 |
+
template=promptTemplate,
|
79 |
+
verbalizer=promptVerbalizer,
|
80 |
+
freeze_plm=True
|
81 |
+
)
|
82 |
+
result = []
|
83 |
+
for step, inputs in enumerate(test_dataloader):
|
84 |
+
logits = prompt_model(inputs)
|
85 |
+
result.extend(torch.argmax(logits, dim=-1))
|
86 |
+
output = '\n'.join([f"{classes[res]}, {raw_sentences[i]}" for i,res in enumerate(result)])
|
87 |
+
return str(output)
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
demo = gr.Interface(fn=sentiment_analysis,
|
92 |
+
inputs = [gr.TextArea(placeholder="Enter sentence here. If you have multiple sentences, separate them with '\\n'.",
|
93 |
+
label="Sentence",lines=5,
|
94 |
+
max_lines = 10),
|
95 |
+
gr.Radio(choices=["RoBERTa_Chinese_AnnualReport_tuned",
|
96 |
+
"RoBERTa_Chinese_FinancialNews_tuned",
|
97 |
+
"RoBERTa_English_AnnualReport_tuned",
|
98 |
+
"RoBERTa_English_FinancialNews_tuned"],
|
99 |
+
label="Model Selection")],
|
100 |
+
outputs=gr.TextArea(label="Sentiment",lines=5, show_copy_button=True, max_lines = 10),
|
101 |
+
title = "Prompt Learning-Based Disclosure Sentiment Detection"
|
102 |
+
)
|
103 |
+
|
104 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
scikit-learn
|
5 |
+
openprompt
|
6 |
+
sacremoses
|