Spaces:
Sleeping
Sleeping
arnavmehta7
commited on
Commit
•
b0c547a
1
Parent(s):
26fdaed
Update app.py
Browse files
app.py
CHANGED
@@ -4,16 +4,14 @@ import torch
|
|
4 |
import librosa
|
5 |
from pathlib import Path
|
6 |
import tempfile, torchaudio
|
7 |
-
# from faster_whisper import WhisperModel
|
8 |
from transformers import pipeline
|
9 |
from uuid import uuid4
|
10 |
|
11 |
# Load the MARS5 model
|
12 |
mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
|
13 |
-
# asr_model = WhisperModel("small", device="cpu", compute_type="int8")
|
14 |
asr_model = pipeline(
|
15 |
"automatic-speech-recognition",
|
16 |
-
model="openai/whisper-
|
17 |
chunk_length_s=30,
|
18 |
device=torch.device("cuda:0"),
|
19 |
)
|
@@ -24,15 +22,16 @@ def transcribe_file(f: str) -> str:
|
|
24 |
return " ".join([prediction["text"] for prediction in predictions])
|
25 |
|
26 |
# Function to process the text and audio input and generate the synthesized output
|
27 |
-
def synthesize(text, audio_file, transcript):
|
28 |
-
|
29 |
-
|
|
|
30 |
|
31 |
-
# copying the audio_file
|
32 |
-
with open(audio_file, 'rb') as src, open(temp_file, 'wb') as dst:
|
33 |
-
|
34 |
|
35 |
-
audio_file = temp_file
|
36 |
|
37 |
print(f">>>>> synthesizing! audio_file: {audio_file}")
|
38 |
if not transcript:
|
@@ -43,11 +42,10 @@ def synthesize(text, audio_file, transcript):
|
|
43 |
wav = torch.from_numpy(wav)
|
44 |
|
45 |
# Define the configuration for the TTS model
|
46 |
-
|
47 |
-
cfg = config_class(deep_clone=deep_clone, rep_penalty_window=100, top_k=100, temperature=0.7, freq_penalty=3)
|
48 |
|
49 |
# Generate the synthesized audio
|
50 |
-
ar_codes, wav_out = mars5.tts(text, wav, transcript, cfg=cfg)
|
51 |
|
52 |
# Save the synthesized audio to a temporary file
|
53 |
output_path = Path(tempfile.mktemp(suffix=".wav"))
|
@@ -73,7 +71,7 @@ with gr.Blocks() as demo:
|
|
73 |
text = gr.Textbox(label="Text to synthesize")
|
74 |
audio_file = gr.Audio(label="Audio file to clone from", type="filepath")
|
75 |
|
76 |
-
generate_btn = gr.Button(
|
77 |
|
78 |
with gr.Accordion("Advanced Settings", open=False):
|
79 |
gr.Markdown("additional inference settings\nWARNING: changing these incorrectly may degrade quality.")
|
@@ -86,18 +84,77 @@ with gr.Blocks() as demo:
|
|
86 |
presence_penalty = gr.Slider(minimum=0, maximum=5, step=0.05, label="presence_penalty", value=defaults['presence_penalty'])
|
87 |
rep_penalty_window = gr.Slider(minimum=1, maximum=500, step=1, label="rep_penalty_window", value=defaults['rep_penalty_window'])
|
88 |
nar_guidance_w = gr.Slider(minimum=1, maximum=8, step=0.1, label="nar_guidance_w", value=defaults['nar_guidance_w'])
|
89 |
-
meta_n = gr.Slider(minimum=1, maximum=10, step=1, label="meta_n", value=2, interactive=False)
|
90 |
deep_clone = gr.Checkbox(value=defaults['deep_clone'], label='deep_clone')
|
91 |
-
|
92 |
-
dummy = gr.Number(label='Example number', visible=False)
|
93 |
-
|
94 |
output = gr.Audio(label="Synthesized Audio", type="filepath")
|
95 |
-
def on_click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
print(f">>>> transcript: {prompt_text}; audio_file = {audio_file}")
|
97 |
-
of = synthesize(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
print(f">>>> output file: {of}")
|
99 |
return of
|
100 |
|
101 |
-
generate_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
demo.launch(share=False)
|
|
|
4 |
import librosa
|
5 |
from pathlib import Path
|
6 |
import tempfile, torchaudio
|
|
|
7 |
from transformers import pipeline
|
8 |
from uuid import uuid4
|
9 |
|
10 |
# Load the MARS5 model
|
11 |
mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
|
|
|
12 |
asr_model = pipeline(
|
13 |
"automatic-speech-recognition",
|
14 |
+
model="openai/whisper-tiny",
|
15 |
chunk_length_s=30,
|
16 |
device=torch.device("cuda:0"),
|
17 |
)
|
|
|
22 |
return " ".join([prediction["text"] for prediction in predictions])
|
23 |
|
24 |
# Function to process the text and audio input and generate the synthesized output
|
25 |
+
def synthesize(text, audio_file, transcript, kwargs_dict):
|
26 |
+
print(f">>>>>>> Kwargs dict: {kwargs_dict}")
|
27 |
+
# audio_file = Path(audio_file)
|
28 |
+
# temp_file = f"{uuid4()}.{audio_file.suffix}"
|
29 |
|
30 |
+
# # copying the audio_file
|
31 |
+
# with open(audio_file, 'rb') as src, open(temp_file, 'wb') as dst:
|
32 |
+
# dst.write(src.read())
|
33 |
|
34 |
+
# audio_file = temp_file
|
35 |
|
36 |
print(f">>>>> synthesizing! audio_file: {audio_file}")
|
37 |
if not transcript:
|
|
|
42 |
wav = torch.from_numpy(wav)
|
43 |
|
44 |
# Define the configuration for the TTS model
|
45 |
+
cfg = config_class(**kwargs_dict)
|
|
|
46 |
|
47 |
# Generate the synthesized audio
|
48 |
+
ar_codes, wav_out = mars5.tts(text, wav, transcript.strip(), cfg=cfg)
|
49 |
|
50 |
# Save the synthesized audio to a temporary file
|
51 |
output_path = Path(tempfile.mktemp(suffix=".wav"))
|
|
|
71 |
text = gr.Textbox(label="Text to synthesize")
|
72 |
audio_file = gr.Audio(label="Audio file to clone from", type="filepath")
|
73 |
|
74 |
+
generate_btn = gr.Button("Generate Synthesized Audio")
|
75 |
|
76 |
with gr.Accordion("Advanced Settings", open=False):
|
77 |
gr.Markdown("additional inference settings\nWARNING: changing these incorrectly may degrade quality.")
|
|
|
84 |
presence_penalty = gr.Slider(minimum=0, maximum=5, step=0.05, label="presence_penalty", value=defaults['presence_penalty'])
|
85 |
rep_penalty_window = gr.Slider(minimum=1, maximum=500, step=1, label="rep_penalty_window", value=defaults['rep_penalty_window'])
|
86 |
nar_guidance_w = gr.Slider(minimum=1, maximum=8, step=0.1, label="nar_guidance_w", value=defaults['nar_guidance_w'])
|
|
|
87 |
deep_clone = gr.Checkbox(value=defaults['deep_clone'], label='deep_clone')
|
88 |
+
|
|
|
|
|
89 |
output = gr.Audio(label="Synthesized Audio", type="filepath")
|
90 |
+
def on_click(
|
91 |
+
text,
|
92 |
+
audio_file,
|
93 |
+
prompt_text,
|
94 |
+
temperature,
|
95 |
+
top_k,
|
96 |
+
top_p,
|
97 |
+
typical_p,
|
98 |
+
freq_penalty,
|
99 |
+
presence_penalty,
|
100 |
+
rep_penalty_window,
|
101 |
+
nar_guidance_w,
|
102 |
+
deep_clone
|
103 |
+
):
|
104 |
print(f">>>> transcript: {prompt_text}; audio_file = {audio_file}")
|
105 |
+
of = synthesize(
|
106 |
+
text,
|
107 |
+
audio_file,
|
108 |
+
prompt_text,
|
109 |
+
{
|
110 |
+
'temperature': temperature,
|
111 |
+
'top_k': top_k,
|
112 |
+
'top_p': top_p,
|
113 |
+
'typical_p': typical_p,
|
114 |
+
'freq_penalty': freq_penalty,
|
115 |
+
'presence_penalty': presence_penalty,
|
116 |
+
'rep_penalty_window': rep_penalty_window,
|
117 |
+
'nar_guidance_w': nar_guidance_w,
|
118 |
+
'deep_clone': deep_clone
|
119 |
+
}
|
120 |
+
)
|
121 |
print(f">>>> output file: {of}")
|
122 |
return of
|
123 |
|
124 |
+
generate_btn.click(
|
125 |
+
on_click,
|
126 |
+
inputs=[
|
127 |
+
text,
|
128 |
+
audio_file,
|
129 |
+
prompt_text,
|
130 |
+
temperature,
|
131 |
+
top_k,
|
132 |
+
top_p,
|
133 |
+
typical_p,
|
134 |
+
freq_penalty,
|
135 |
+
presence_penalty,
|
136 |
+
rep_penalty_window,
|
137 |
+
nar_guidance_w,
|
138 |
+
deep_clone
|
139 |
+
],
|
140 |
+
outputs=[output]
|
141 |
+
)
|
142 |
+
|
143 |
+
gr.Markdown("### Examples")
|
144 |
+
|
145 |
+
# Add examples
|
146 |
+
defaults = [0.8, -1, 0.2, 1.0, 2.6, 0.4, 100, 3, True]
|
147 |
+
examples = [
|
148 |
+
["Today is a wonderful day!", "female_speaker_1.flac", "People look, but no one ever finds it.", *defaults],
|
149 |
+
["You guys need to figure this out.", "male_speaker_1.flac", "Ask her to bring these things with her from the store.", *defaults]
|
150 |
+
]
|
151 |
+
|
152 |
+
gr.Examples(
|
153 |
+
examples=examples,
|
154 |
+
inputs=[text, audio_file, prompt_text, temperature, top_k, top_p, typical_p, freq_penalty, presence_penalty, rep_penalty_window, nar_guidance_w, deep_clone],
|
155 |
+
outputs=[output],
|
156 |
+
cache_examples=False,
|
157 |
+
fn=on_click
|
158 |
+
)
|
159 |
|
160 |
demo.launch(share=False)
|