SaulLu's picture
Revert "Exclude profiles of training admins"
102ea52
raw
history blame
7.02 kB
import datetime
from concurrent.futures import as_completed
from urllib import parse
import pandas as pd
import streamlit as st
import wandb
from requests_futures.sessions import FuturesSession
from dashboard_utils.time_tracker import _log, simple_time_tracker
URL_QUICKSEARCH = "https://huggingface.co/api/quicksearch?"
WANDB_REPO = st.secrets["WANDB_REPO_INDIVIDUAL_METRICS"]
CACHE_TTL = 100
MAX_DELTA_ACTIVE_RUN_SEC = 60 * 5
@st.cache(ttl=CACHE_TTL, show_spinner=False)
@simple_time_tracker(_log)
def get_new_bubble_data():
serialized_data_points, latest_timestamp = get_serialized_data_points()
serialized_data = get_serialized_data(serialized_data_points, latest_timestamp)
usernames = []
for item in serialized_data["points"][0]:
usernames.append(item["profileId"])
profiles = get_profiles(usernames)
return serialized_data, profiles
@st.cache(ttl=CACHE_TTL, show_spinner=False)
@simple_time_tracker(_log)
def get_profiles(usernames):
profiles = []
with FuturesSession(max_workers=32) as session:
futures = []
for username in usernames:
future = session.get(URL_QUICKSEARCH + parse.urlencode({"type": "user", "q": username}))
future.username = username
futures.append(future)
for future in as_completed(futures):
resp = future.result()
username = future.username
response = resp.json()
avatarUrl = None
if response["users"]:
for user_candidate in response["users"]:
if user_candidate["user"] == username:
avatarUrl = response["users"][0]["avatarUrl"]
break
if not avatarUrl:
avatarUrl = "/avatars/57584cb934354663ac65baa04e6829bf.svg"
if avatarUrl.startswith("/avatars/"):
avatarUrl = f"https://huggingface.co{avatarUrl}"
profiles.append(
{"id": username, "name": username, "src": avatarUrl, "url": f"https://huggingface.co/{username}"}
)
return profiles
@st.cache(ttl=CACHE_TTL, show_spinner=False)
@simple_time_tracker(_log)
def get_serialized_data_points():
api = wandb.Api()
runs = api.runs(WANDB_REPO)
serialized_data_points = {}
latest_timestamp = None
for run in runs:
run_summary = run.summary._json_dict
run_name = run.name
state = run.state
if run_name in serialized_data_points:
if "_timestamp" in run_summary and "_step" in run_summary:
timestamp = run_summary["_timestamp"]
serialized_data_points[run_name]["Runs"].append(
{
"batches": run_summary["_step"],
"runtime": run_summary["_runtime"],
"loss": run_summary["train/loss"],
"state": state,
"velocity": run_summary["_step"] / run_summary["_runtime"],
"date": datetime.datetime.utcfromtimestamp(timestamp),
}
)
if not latest_timestamp or timestamp > latest_timestamp:
latest_timestamp = timestamp
else:
if "_timestamp" in run_summary and "_step" in run_summary:
timestamp = run_summary["_timestamp"]
serialized_data_points[run_name] = {
"profileId": run_name,
"Runs": [
{
"batches": run_summary["_step"],
"runtime": run_summary["_runtime"],
"loss": run_summary["train/loss"],
"state": state,
"velocity": run_summary["_step"] / run_summary["_runtime"],
"date": datetime.datetime.utcfromtimestamp(timestamp),
}
],
}
if not latest_timestamp or timestamp > latest_timestamp:
latest_timestamp = timestamp
latest_timestamp = datetime.datetime.utcfromtimestamp(latest_timestamp)
return serialized_data_points, latest_timestamp
@st.cache(ttl=CACHE_TTL, show_spinner=False)
@simple_time_tracker(_log)
def get_serialized_data(serialized_data_points, latest_timestamp):
serialized_data_points_v2 = []
max_velocity = 1
for run_name, serialized_data_point in serialized_data_points.items():
activeRuns = []
loss = 0
runtime = 0
batches = 0
velocity = 0
for run in serialized_data_point["Runs"]:
if run["state"] == "running":
run["date"] = run["date"].isoformat()
activeRuns.append(run)
loss += run["loss"]
velocity += run["velocity"]
loss = loss / len(activeRuns) if activeRuns else 0
runtime += run["runtime"]
batches += run["batches"]
new_item = {
"date": latest_timestamp.isoformat(),
"profileId": run_name,
"batches": runtime, # "batches": batches quick and dirty fix
"runtime": runtime,
"activeRuns": activeRuns,
}
serialized_data_points_v2.append(new_item)
serialized_data = {"points": [serialized_data_points_v2], "maxVelocity": max_velocity}
return serialized_data
def get_leaderboard(serialized_data):
data_leaderboard = {"user": [], "runtime": []}
for user_item in serialized_data["points"][0]:
data_leaderboard["user"].append(user_item["profileId"])
data_leaderboard["runtime"].append(user_item["runtime"])
df = pd.DataFrame(data_leaderboard)
df = df.sort_values("runtime", ascending=False)
df["runtime"] = df["runtime"].apply(lambda x: datetime.timedelta(seconds=x))
df["runtime"] = df["runtime"].apply(lambda x: str(x))
df.reset_index(drop=True, inplace=True)
df.rename(columns={"user": "User", "runtime": "Total time contributed"}, inplace=True)
df["Rank"] = df.index + 1
df = df.set_index("Rank")
return df
def get_global_metrics(serialized_data):
current_time = datetime.datetime.utcnow()
num_contributing_users = len(serialized_data["points"][0])
num_active_users = 0
total_runtime = 0
for user_item in serialized_data["points"][0]:
for run in user_item["activeRuns"]:
date_run = datetime.datetime.fromisoformat(run["date"])
delta_time_sec = (current_time - date_run).total_seconds()
if delta_time_sec < MAX_DELTA_ACTIVE_RUN_SEC:
num_active_users += 1
break
total_runtime += user_item["runtime"]
total_runtime = datetime.timedelta(seconds=total_runtime)
return {
"num_contributing_users": num_contributing_users,
"num_active_users": num_active_users,
"total_runtime": total_runtime,
}