Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -367,33 +367,36 @@ class RSM_BoxBehnken:
|
|
367 |
'Valor p': [],
|
368 |
'% Contribuci贸n': []
|
369 |
})
|
370 |
-
|
371 |
# Calcular estad铆sticos F y porcentaje de contribuci贸n para cada factor
|
372 |
ms_error = anova_table.loc['Residual', 'sum_sq'] / anova_table.loc['Residual', 'df']
|
373 |
-
|
374 |
-
# Agregar
|
375 |
-
block_ss = self.data.groupby('
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
|
|
393 |
model_df = anova_table['df'][:-1].sum()
|
394 |
model_ms = model_ss / model_df
|
395 |
model_f = model_ms / ms_error
|
396 |
model_p = f.sf(model_f, model_df, anova_table.loc['Residual', 'df'])
|
|
|
|
|
397 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
398 |
'Fuente de Variaci贸n': ['Model'],
|
399 |
'Suma de Cuadrados': [model_ss],
|
@@ -401,19 +404,19 @@ class RSM_BoxBehnken:
|
|
401 |
'Cuadrado Medio': [model_ms],
|
402 |
'F': [model_f],
|
403 |
'Valor p': [model_p],
|
404 |
-
'% Contribuci贸n': [
|
405 |
})], ignore_index=True)
|
406 |
|
407 |
-
# Agregar
|
408 |
for index, row in anova_table.iterrows():
|
409 |
if index != 'Residual':
|
410 |
factor_name = index
|
411 |
if factor_name == f'I({self.x1_name} ** 2)':
|
412 |
-
factor_name = f'{self.x1_name}
|
413 |
elif factor_name == f'I({self.x2_name} ** 2)':
|
414 |
-
factor_name = f'{self.x2_name}
|
415 |
elif factor_name == f'I({self.x3_name} ** 2)':
|
416 |
-
factor_name = f'{self.x3_name}
|
417 |
|
418 |
ss_factor = row['sum_sq']
|
419 |
df_factor = row['df']
|
@@ -432,28 +435,17 @@ class RSM_BoxBehnken:
|
|
432 |
'% Contribuci贸n': [contribution_percentage]
|
433 |
})], ignore_index=True)
|
434 |
|
435 |
-
# Agregar
|
436 |
-
|
437 |
-
|
438 |
-
residual_ms = residual_ss / residual_df
|
439 |
-
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
440 |
-
'Fuente de Variaci贸n': ['Residual'],
|
441 |
-
'Suma de Cuadrados': [residual_ss],
|
442 |
-
'Grados de Libertad': [residual_df],
|
443 |
-
'Cuadrado Medio': [residual_ms],
|
444 |
-
'F': [None],
|
445 |
-
'Valor p': [None],
|
446 |
-
'% Contribuci贸n': [(residual_ss / ss_total) * 100]
|
447 |
-
})], ignore_index=True)
|
448 |
|
449 |
-
# Agregar Correlation Total
|
450 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
451 |
'Fuente de Variaci贸n': ['Cor Total'],
|
452 |
-
'Suma de Cuadrados': [
|
453 |
-
'Grados de Libertad': [
|
454 |
-
'Cuadrado Medio': [
|
455 |
-
'F': [
|
456 |
-
'Valor p': [
|
457 |
'% Contribuci贸n': [100]
|
458 |
})], ignore_index=True)
|
459 |
|
|
|
367 |
'Valor p': [],
|
368 |
'% Contribuci贸n': []
|
369 |
})
|
370 |
+
|
371 |
# Calcular estad铆sticos F y porcentaje de contribuci贸n para cada factor
|
372 |
ms_error = anova_table.loc['Residual', 'sum_sq'] / anova_table.loc['Residual', 'df']
|
373 |
+
|
374 |
+
# Agregar fila para el bloque
|
375 |
+
block_ss = self.data.groupby('Exp.')[self.y_name].sum().var() * len(self.data)
|
376 |
+
block_df = 1
|
377 |
+
block_ms = block_ss / block_df
|
378 |
+
block_f = block_ms / ms_error
|
379 |
+
block_p = f.sf(block_f, block_df, anova_table.loc['Residual', 'df'])
|
380 |
+
block_contribution = (block_ss / ss_total) * 100
|
381 |
+
|
382 |
+
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
383 |
+
'Fuente de Variaci贸n': ['Block'],
|
384 |
+
'Suma de Cuadrados': [block_ss],
|
385 |
+
'Grados de Libertad': [block_df],
|
386 |
+
'Cuadrado Medio': [block_ms],
|
387 |
+
'F': [block_f],
|
388 |
+
'Valor p': [block_p],
|
389 |
+
'% Contribuci贸n': [block_contribution]
|
390 |
+
})], ignore_index=True)
|
391 |
+
|
392 |
+
# Agregar fila para el modelo
|
393 |
+
model_ss = anova_table['sum_sq'][:-1].sum() # Suma todo excepto residual
|
394 |
model_df = anova_table['df'][:-1].sum()
|
395 |
model_ms = model_ss / model_df
|
396 |
model_f = model_ms / ms_error
|
397 |
model_p = f.sf(model_f, model_df, anova_table.loc['Residual', 'df'])
|
398 |
+
model_contribution = (model_ss / ss_total) * 100
|
399 |
+
|
400 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
401 |
'Fuente de Variaci贸n': ['Model'],
|
402 |
'Suma de Cuadrados': [model_ss],
|
|
|
404 |
'Cuadrado Medio': [model_ms],
|
405 |
'F': [model_f],
|
406 |
'Valor p': [model_p],
|
407 |
+
'% Contribuci贸n': [model_contribution]
|
408 |
})], ignore_index=True)
|
409 |
|
410 |
+
# Agregar filas para cada t茅rmino del modelo
|
411 |
for index, row in anova_table.iterrows():
|
412 |
if index != 'Residual':
|
413 |
factor_name = index
|
414 |
if factor_name == f'I({self.x1_name} ** 2)':
|
415 |
+
factor_name = f'{self.x1_name}^2'
|
416 |
elif factor_name == f'I({self.x2_name} ** 2)':
|
417 |
+
factor_name = f'{self.x2_name}^2'
|
418 |
elif factor_name == f'I({self.x3_name} ** 2)':
|
419 |
+
factor_name = f'{self.x3_name}^2'
|
420 |
|
421 |
ss_factor = row['sum_sq']
|
422 |
df_factor = row['df']
|
|
|
435 |
'% Contribuci贸n': [contribution_percentage]
|
436 |
})], ignore_index=True)
|
437 |
|
438 |
+
# Agregar fila para Cor Total
|
439 |
+
cor_total_ss = ss_total
|
440 |
+
cor_total_df = len(self.data) - 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
|
|
|
442 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
443 |
'Fuente de Variaci贸n': ['Cor Total'],
|
444 |
+
'Suma de Cuadrados': [cor_total_ss],
|
445 |
+
'Grados de Libertad': [cor_total_df],
|
446 |
+
'Cuadrado Medio': [np.nan],
|
447 |
+
'F': [np.nan],
|
448 |
+
'Valor p': [np.nan],
|
449 |
'% Contribuci贸n': [100]
|
450 |
})], ignore_index=True)
|
451 |
|