Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -350,13 +350,13 @@ class RSM_BoxBehnken:
|
|
350 |
if self.model_simplified is None:
|
351 |
print("Error: Ajusta el modelo simplificado primero.")
|
352 |
return None
|
353 |
-
|
354 |
# ANOVA del modelo simplificado
|
355 |
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
356 |
-
|
357 |
# Suma de cuadrados total
|
358 |
ss_total = anova_table['sum_sq'].sum()
|
359 |
-
|
360 |
# Crear tabla de contribución
|
361 |
contribution_table = pd.DataFrame({
|
362 |
'Fuente de Variación': [],
|
@@ -370,24 +370,58 @@ class RSM_BoxBehnken:
|
|
370 |
|
371 |
# Calcular estadísticos F y porcentaje de contribución para cada factor
|
372 |
ms_error = anova_table.loc['Residual', 'sum_sq'] / anova_table.loc['Residual', 'df']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
|
|
|
374 |
for index, row in anova_table.iterrows():
|
375 |
if index != 'Residual':
|
376 |
factor_name = index
|
377 |
if factor_name == f'I({self.x1_name} ** 2)':
|
378 |
-
factor_name = f'{self.x1_name}
|
379 |
elif factor_name == f'I({self.x2_name} ** 2)':
|
380 |
-
factor_name = f'{self.x2_name}
|
381 |
elif factor_name == f'I({self.x3_name} ** 2)':
|
382 |
-
factor_name = f'{self.x3_name}
|
383 |
-
|
384 |
ss_factor = row['sum_sq']
|
385 |
df_factor = row['df']
|
386 |
ms_factor = ss_factor / df_factor
|
387 |
f_stat = ms_factor / ms_error
|
388 |
p_value = f.sf(f_stat, df_factor, anova_table.loc['Residual', 'df'])
|
389 |
contribution_percentage = (ss_factor / ss_total) * 100
|
390 |
-
|
391 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
392 |
'Fuente de Variación': [factor_name],
|
393 |
'Suma de Cuadrados': [ss_factor],
|
@@ -397,22 +431,32 @@ class RSM_BoxBehnken:
|
|
397 |
'Valor p': [p_value],
|
398 |
'% Contribución': [contribution_percentage]
|
399 |
})], ignore_index=True)
|
400 |
-
|
401 |
-
#
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
# Agregar fila para el estadístico F global
|
406 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
407 |
-
'Fuente de Variación': ['
|
408 |
-
'Suma de Cuadrados': [
|
409 |
-
'Grados de Libertad': [
|
410 |
-
'Cuadrado Medio': [
|
411 |
-
'F': [
|
412 |
-
'Valor p': [
|
413 |
-
'% Contribución': [
|
414 |
})], ignore_index=True)
|
415 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
return contribution_table.round(3)
|
417 |
|
418 |
def calculate_detailed_anova(self):
|
|
|
350 |
if self.model_simplified is None:
|
351 |
print("Error: Ajusta el modelo simplificado primero.")
|
352 |
return None
|
353 |
+
|
354 |
# ANOVA del modelo simplificado
|
355 |
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
356 |
+
|
357 |
# Suma de cuadrados total
|
358 |
ss_total = anova_table['sum_sq'].sum()
|
359 |
+
|
360 |
# Crear tabla de contribución
|
361 |
contribution_table = pd.DataFrame({
|
362 |
'Fuente de Variación': [],
|
|
|
370 |
|
371 |
# Calcular estadísticos F y porcentaje de contribución para cada factor
|
372 |
ms_error = anova_table.loc['Residual', 'sum_sq'] / anova_table.loc['Residual', 'df']
|
373 |
+
|
374 |
+
# Agregar Block (si está disponible en los datos)
|
375 |
+
block_ss = self.data.groupby('Block')['AIA_ppm'].sum().var() if 'Block' in self.data.columns else 0
|
376 |
+
if block_ss > 0:
|
377 |
+
block_df = len(self.data['Block'].unique()) - 1 if 'Block' in self.data.columns else 1
|
378 |
+
block_ms = block_ss / block_df
|
379 |
+
block_f = block_ms / ms_error
|
380 |
+
block_p = f.sf(block_f, block_df, anova_table.loc['Residual', 'df'])
|
381 |
+
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
382 |
+
'Fuente de Variación': ['Block'],
|
383 |
+
'Suma de Cuadrados': [block_ss],
|
384 |
+
'Grados de Libertad': [block_df],
|
385 |
+
'Cuadrado Medio': [block_ms],
|
386 |
+
'F': [block_f],
|
387 |
+
'Valor p': [block_p],
|
388 |
+
'% Contribución': [(block_ss / ss_total) * 100]
|
389 |
+
})], ignore_index=True)
|
390 |
+
|
391 |
+
# Agregar Model (suma de todos los términos del modelo excepto el residual)
|
392 |
+
model_ss = anova_table['sum_sq'][:-1].sum() # Excluir residual
|
393 |
+
model_df = anova_table['df'][:-1].sum()
|
394 |
+
model_ms = model_ss / model_df
|
395 |
+
model_f = model_ms / ms_error
|
396 |
+
model_p = f.sf(model_f, model_df, anova_table.loc['Residual', 'df'])
|
397 |
+
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
398 |
+
'Fuente de Variación': ['Model'],
|
399 |
+
'Suma de Cuadrados': [model_ss],
|
400 |
+
'Grados de Libertad': [model_df],
|
401 |
+
'Cuadrado Medio': [model_ms],
|
402 |
+
'F': [model_f],
|
403 |
+
'Valor p': [model_p],
|
404 |
+
'% Contribución': [(model_ss / ss_total) * 100]
|
405 |
+
})], ignore_index=True)
|
406 |
|
407 |
+
# Agregar factores individuales y sus interacciones
|
408 |
for index, row in anova_table.iterrows():
|
409 |
if index != 'Residual':
|
410 |
factor_name = index
|
411 |
if factor_name == f'I({self.x1_name} ** 2)':
|
412 |
+
factor_name = f'{self.x1_name}²'
|
413 |
elif factor_name == f'I({self.x2_name} ** 2)':
|
414 |
+
factor_name = f'{self.x2_name}²'
|
415 |
elif factor_name == f'I({self.x3_name} ** 2)':
|
416 |
+
factor_name = f'{self.x3_name}²'
|
417 |
+
|
418 |
ss_factor = row['sum_sq']
|
419 |
df_factor = row['df']
|
420 |
ms_factor = ss_factor / df_factor
|
421 |
f_stat = ms_factor / ms_error
|
422 |
p_value = f.sf(f_stat, df_factor, anova_table.loc['Residual', 'df'])
|
423 |
contribution_percentage = (ss_factor / ss_total) * 100
|
424 |
+
|
425 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
426 |
'Fuente de Variación': [factor_name],
|
427 |
'Suma de Cuadrados': [ss_factor],
|
|
|
431 |
'Valor p': [p_value],
|
432 |
'% Contribución': [contribution_percentage]
|
433 |
})], ignore_index=True)
|
434 |
+
|
435 |
+
# Agregar Residual
|
436 |
+
residual_ss = anova_table.loc['Residual', 'sum_sq']
|
437 |
+
residual_df = anova_table.loc['Residual', 'df']
|
438 |
+
residual_ms = residual_ss / residual_df
|
|
|
439 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
440 |
+
'Fuente de Variación': ['Residual'],
|
441 |
+
'Suma de Cuadrados': [residual_ss],
|
442 |
+
'Grados de Libertad': [residual_df],
|
443 |
+
'Cuadrado Medio': [residual_ms],
|
444 |
+
'F': [None],
|
445 |
+
'Valor p': [None],
|
446 |
+
'% Contribución': [(residual_ss / ss_total) * 100]
|
447 |
})], ignore_index=True)
|
448 |
+
|
449 |
+
# Agregar Correlation Total
|
450 |
+
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
451 |
+
'Fuente de Variación': ['Cor Total'],
|
452 |
+
'Suma de Cuadrados': [ss_total],
|
453 |
+
'Grados de Libertad': [len(self.data) - 1],
|
454 |
+
'Cuadrado Medio': [None],
|
455 |
+
'F': [None],
|
456 |
+
'Valor p': [None],
|
457 |
+
'% Contribución': [100]
|
458 |
+
})], ignore_index=True)
|
459 |
+
|
460 |
return contribution_table.round(3)
|
461 |
|
462 |
def calculate_detailed_anova(self):
|