Update app.py
Browse files
app.py
CHANGED
@@ -8,22 +8,13 @@ from scipy.optimize import minimize
|
|
8 |
import plotly.express as px
|
9 |
from scipy.stats import t, f
|
10 |
import gradio as gr
|
|
|
|
|
|
|
11 |
|
12 |
class RSM_BoxBehnken:
|
13 |
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
|
14 |
-
|
15 |
-
Inicializa la clase con los datos del diseño Box-Behnken.
|
16 |
-
|
17 |
-
Args:
|
18 |
-
data (pd.DataFrame): DataFrame con los datos del experimento.
|
19 |
-
x1_name (str): Nombre de la primera variable independiente.
|
20 |
-
x2_name (str): Nombre de la segunda variable independiente.
|
21 |
-
x3_name (str): Nombre de la tercera variable independiente.
|
22 |
-
y_name (str): Nombre de la variable dependiente.
|
23 |
-
x1_levels (list): Niveles de la primera variable independiente.
|
24 |
-
x2_levels (list): Niveles de la segunda variable independiente.
|
25 |
-
x3_levels (list): Niveles de la tercera variable independiente.
|
26 |
-
"""
|
27 |
self.data = data.copy()
|
28 |
self.model = None
|
29 |
self.model_simplified = None
|
@@ -41,15 +32,6 @@ class RSM_BoxBehnken:
|
|
41 |
self.x3_levels = x3_levels
|
42 |
|
43 |
def get_levels(self, variable_name):
|
44 |
-
"""
|
45 |
-
Obtiene los niveles para una variable específica.
|
46 |
-
|
47 |
-
Args:
|
48 |
-
variable_name (str): Nombre de la variable.
|
49 |
-
|
50 |
-
Returns:
|
51 |
-
list: Niveles de la variable.
|
52 |
-
"""
|
53 |
if variable_name == self.x1_name:
|
54 |
return self.x1_levels
|
55 |
elif variable_name == self.x2_name:
|
@@ -60,9 +42,6 @@ class RSM_BoxBehnken:
|
|
60 |
raise ValueError(f"Variable desconocida: {variable_name}")
|
61 |
|
62 |
def fit_model(self):
|
63 |
-
"""
|
64 |
-
Ajusta el modelo de segundo orden completo a los datos.
|
65 |
-
"""
|
66 |
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
67 |
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
|
68 |
f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
|
@@ -72,9 +51,6 @@ class RSM_BoxBehnken:
|
|
72 |
return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")
|
73 |
|
74 |
def fit_simplified_model(self):
|
75 |
-
"""
|
76 |
-
Ajusta el modelo de segundo orden a los datos, eliminando términos no significativos.
|
77 |
-
"""
|
78 |
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
|
79 |
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
80 |
self.model_simplified = smf.ols(formula, data=self.data).fit()
|
@@ -83,12 +59,6 @@ class RSM_BoxBehnken:
|
|
83 |
return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
|
84 |
|
85 |
def optimize(self, method='Nelder-Mead'):
|
86 |
-
"""
|
87 |
-
Encuentra los niveles óptimos de los factores para maximizar la respuesta usando el modelo simplificado.
|
88 |
-
|
89 |
-
Args:
|
90 |
-
method (str): Método de optimización a utilizar (por defecto, 'Nelder-Mead').
|
91 |
-
"""
|
92 |
if self.model_simplified is None:
|
93 |
print("Error: Ajusta el modelo simplificado primero.")
|
94 |
return
|
@@ -102,85 +72,60 @@ class RSM_BoxBehnken:
|
|
102 |
self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
|
103 |
self.optimal_levels = self.optimized_results.x
|
104 |
|
105 |
-
# Convertir niveles óptimos de codificados a naturales
|
106 |
optimal_levels_natural = [
|
107 |
-
self.coded_to_natural(self.optimal_levels[0], self.x1_name),
|
108 |
-
self.coded_to_natural(self.optimal_levels[1], self.x2_name),
|
109 |
-
self.coded_to_natural(self.optimal_levels[2], self.x3_name)
|
110 |
]
|
111 |
-
# Crear la tabla de optimización
|
112 |
optimization_table = pd.DataFrame({
|
113 |
'Variable': [self.x1_name, self.x2_name, self.x3_name],
|
114 |
'Nivel Óptimo (Natural)': optimal_levels_natural,
|
115 |
-
'Nivel Óptimo (Codificado)': self.optimal_levels
|
116 |
})
|
117 |
|
118 |
return optimization_table
|
119 |
|
120 |
def plot_rsm_individual(self, fixed_variable, fixed_level):
|
121 |
-
"""
|
122 |
-
Genera un gráfico de superficie de respuesta (RSM) individual para una configuración específica.
|
123 |
-
|
124 |
-
Args:
|
125 |
-
fixed_variable (str): Nombre de la variable a mantener fija.
|
126 |
-
fixed_level (float): Nivel al que se fija la variable (en unidades naturales).
|
127 |
-
|
128 |
-
Returns:
|
129 |
-
go.Figure: Objeto de figura de Plotly.
|
130 |
-
"""
|
131 |
if self.model_simplified is None:
|
132 |
print("Error: Ajusta el modelo simplificado primero.")
|
133 |
return None
|
134 |
|
135 |
-
# Determinar las variables que varían y sus niveles naturales
|
136 |
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
|
137 |
|
138 |
-
# Establecer los niveles naturales para las variables que varían
|
139 |
x_natural_levels = self.get_levels(varying_variables[0])
|
140 |
y_natural_levels = self.get_levels(varying_variables[1])
|
141 |
|
142 |
-
# Crear una malla de puntos para las variables que varían (en unidades naturales)
|
143 |
x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
|
144 |
y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
|
145 |
x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)
|
146 |
|
147 |
-
# Convertir la malla de variables naturales a codificadas
|
148 |
x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
|
149 |
y_grid_coded = self.natural_to_coded(y_grid_natural, varying_variables[1])
|
150 |
|
151 |
-
# Crear un DataFrame para la predicción con variables codificadas
|
152 |
prediction_data = pd.DataFrame({
|
153 |
varying_variables[0]: x_grid_coded.flatten(),
|
154 |
varying_variables[1]: y_grid_coded.flatten(),
|
155 |
})
|
156 |
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
|
157 |
|
158 |
-
# Calcular los valores predichos
|
159 |
z_pred = self.model_simplified.predict(prediction_data).values.reshape(x_grid_coded.shape)
|
160 |
|
161 |
-
# 1. Identificar los dos factores que varían
|
162 |
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
|
163 |
|
164 |
-
# 2. Filtrar por el nivel de la variable fija (en codificado)
|
165 |
fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
|
166 |
subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]
|
167 |
|
168 |
-
# 3. Filtrar por niveles válidos en las variables que varían
|
169 |
valid_levels = [-1, 0, 1]
|
170 |
experiments_data = subset_data[
|
171 |
subset_data[varying_variables[0]].isin(valid_levels) &
|
172 |
subset_data[varying_variables[1]].isin(valid_levels)
|
173 |
]
|
174 |
|
175 |
-
# Convertir coordenadas de experimentos a naturales
|
176 |
experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
|
177 |
experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))
|
178 |
|
179 |
-
# Crear el gráfico de superficie con variables naturales en los ejes y transparencia
|
180 |
fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])
|
181 |
|
182 |
-
# --- Añadir cuadrícula a la superficie ---
|
183 |
-
# Líneas en la dirección x
|
184 |
for i in range(x_grid_natural.shape[0]):
|
185 |
fig.add_trace(go.Scatter3d(
|
186 |
x=x_grid_natural[i, :],
|
@@ -191,7 +136,6 @@ class RSM_BoxBehnken:
|
|
191 |
showlegend=False,
|
192 |
hoverinfo='skip'
|
193 |
))
|
194 |
-
# Líneas en la dirección y
|
195 |
for j in range(x_grid_natural.shape[1]):
|
196 |
fig.add_trace(go.Scatter3d(
|
197 |
x=x_grid_natural[:, j],
|
@@ -203,10 +147,6 @@ class RSM_BoxBehnken:
|
|
203 |
hoverinfo='skip'
|
204 |
))
|
205 |
|
206 |
-
# --- Fin de la adición de la cuadrícula ---
|
207 |
-
|
208 |
-
# Añadir los puntos de los experimentos en la superficie de respuesta con diferentes colores y etiquetas
|
209 |
-
# Crear una lista de colores y etiquetas para los puntos
|
210 |
colors = ['red', 'blue', 'green', 'purple', 'orange', 'yellow', 'cyan', 'magenta']
|
211 |
point_labels = []
|
212 |
for i, row in experiments_data.iterrows():
|
@@ -217,22 +157,17 @@ class RSM_BoxBehnken:
|
|
217 |
y=experiments_y_natural,
|
218 |
z=experiments_data[self.y_name],
|
219 |
mode='markers+text',
|
220 |
-
marker=dict(size=4, color=colors[:len(experiments_x_natural)]),
|
221 |
-
text=point_labels,
|
222 |
textposition='top center',
|
223 |
name='Experimentos'
|
224 |
))
|
225 |
|
226 |
-
# Añadir etiquetas y título con variables naturales
|
227 |
fig.update_layout(
|
228 |
scene=dict(
|
229 |
xaxis_title=varying_variables[0] + " (g/L)",
|
230 |
yaxis_title=varying_variables[1] + " (g/L)",
|
231 |
zaxis_title=self.y_name,
|
232 |
-
# Puedes mantener la configuración de grid en los planos si lo deseas
|
233 |
-
# xaxis=dict(showgrid=True, gridwidth=1, gridcolor='lightgray'),
|
234 |
-
# yaxis=dict(showgrid=True, gridwidth=1, gridcolor='lightgray'),
|
235 |
-
# zaxis=dict(showgrid=True, gridwidth=1, gridcolor='lightgray')
|
236 |
),
|
237 |
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.2f} (g/L) (Modelo Simplificado)</sup>",
|
238 |
height=800,
|
@@ -242,59 +177,44 @@ class RSM_BoxBehnken:
|
|
242 |
return fig
|
243 |
|
244 |
def generate_all_plots(self):
|
245 |
-
"""
|
246 |
-
Genera todas las gráficas de RSM, variando la variable fija y sus niveles usando el modelo simplificado.
|
247 |
-
"""
|
248 |
if self.model_simplified is None:
|
249 |
print("Error: Ajusta el modelo simplificado primero.")
|
250 |
return
|
251 |
|
252 |
-
# Niveles naturales para graficar
|
253 |
levels_to_plot_natural = {
|
254 |
self.x1_name: self.x1_levels,
|
255 |
self.x2_name: self.x2_levels,
|
256 |
self.x3_name: self.x3_levels
|
257 |
}
|
|
|
|
|
258 |
|
259 |
-
# Generar y mostrar gráficos individuales
|
260 |
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
|
261 |
for level in levels_to_plot_natural[fixed_variable]:
|
262 |
fig = self.plot_rsm_individual(fixed_variable, level)
|
263 |
if fig is not None:
|
264 |
-
|
|
|
265 |
|
266 |
def coded_to_natural(self, coded_value, variable_name):
|
267 |
-
"""Convierte un valor codificado a su valor natural."""
|
268 |
levels = self.get_levels(variable_name)
|
269 |
return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2
|
270 |
|
271 |
def natural_to_coded(self, natural_value, variable_name):
|
272 |
-
"""Convierte un valor natural a su valor codificado."""
|
273 |
levels = self.get_levels(variable_name)
|
274 |
return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0])
|
275 |
|
276 |
def pareto_chart(self, model, title):
|
277 |
-
|
278 |
-
Genera un diagrama de Pareto para los efectos estandarizados de un modelo,
|
279 |
-
incluyendo la línea de significancia.
|
280 |
-
|
281 |
-
Args:
|
282 |
-
model: Modelo ajustado de statsmodels.
|
283 |
-
title (str): Título del gráfico.
|
284 |
-
"""
|
285 |
-
# Calcular los efectos estandarizados
|
286 |
-
tvalues = model.tvalues[1:] # Excluir la Intercept
|
287 |
abs_tvalues = np.abs(tvalues)
|
288 |
sorted_idx = np.argsort(abs_tvalues)[::-1]
|
289 |
sorted_tvalues = abs_tvalues[sorted_idx]
|
290 |
sorted_names = tvalues.index[sorted_idx]
|
291 |
|
292 |
-
|
293 |
-
|
294 |
-
dof = model.df_resid # Grados de libertad residuales
|
295 |
t_critical = t.ppf(1 - alpha / 2, dof)
|
296 |
|
297 |
-
# Crear el diagrama de Pareto
|
298 |
fig = px.bar(
|
299 |
x=sorted_tvalues,
|
300 |
y=sorted_names,
|
@@ -304,7 +224,6 @@ class RSM_BoxBehnken:
|
|
304 |
)
|
305 |
fig.update_yaxes(autorange="reversed")
|
306 |
|
307 |
-
# Agregar la línea de significancia
|
308 |
fig.add_vline(x=t_critical, line_dash="dot",
|
309 |
annotation_text=f"t crítico = {t_critical:.2f}",
|
310 |
annotation_position="bottom right")
|
@@ -312,37 +231,31 @@ class RSM_BoxBehnken:
|
|
312 |
return fig
|
313 |
|
314 |
def get_simplified_equation(self):
|
315 |
-
"""
|
316 |
-
Imprime la ecuación del modelo simplificado.
|
317 |
-
"""
|
318 |
if self.model_simplified is None:
|
319 |
print("Error: Ajusta el modelo simplificado primero.")
|
320 |
return None
|
321 |
|
322 |
coefficients = self.model_simplified.params
|
323 |
-
equation = f"{self.y_name} = {coefficients['Intercept']:.
|
324 |
|
325 |
for term, coef in coefficients.items():
|
326 |
if term != 'Intercept':
|
327 |
if term == f'{self.x1_name}':
|
328 |
-
equation += f" + {coef:.
|
329 |
elif term == f'{self.x2_name}':
|
330 |
-
equation += f" + {coef:.
|
331 |
elif term == f'{self.x3_name}':
|
332 |
-
equation += f" + {coef:.
|
333 |
elif term == f'I({self.x1_name} ** 2)':
|
334 |
-
equation += f" + {coef:.
|
335 |
elif term == f'I({self.x2_name} ** 2)':
|
336 |
-
equation += f" + {coef:.
|
337 |
elif term == f'I({self.x3_name} ** 2)':
|
338 |
-
equation += f" + {coef:.
|
339 |
|
340 |
return equation
|
341 |
|
342 |
def generate_prediction_table(self):
|
343 |
-
"""
|
344 |
-
Genera una tabla con los valores actuales, predichos y residuales.
|
345 |
-
"""
|
346 |
if self.model_simplified is None:
|
347 |
print("Error: Ajusta el modelo simplificado primero.")
|
348 |
return None
|
@@ -350,30 +263,27 @@ class RSM_BoxBehnken:
|
|
350 |
self.data['Predicho'] = self.model_simplified.predict(self.data)
|
351 |
self.data['Residual'] = self.data[self.y_name] - self.data['Predicho']
|
352 |
|
353 |
-
|
|
|
|
|
|
|
|
|
|
|
354 |
|
355 |
def calculate_contribution_percentage(self):
|
356 |
-
"""
|
357 |
-
Calcula el porcentaje de contribución de cada factor a la variabilidad de la respuesta (AIA).
|
358 |
-
"""
|
359 |
if self.model_simplified is None:
|
360 |
print("Error: Ajusta el modelo simplificado primero.")
|
361 |
return None
|
362 |
|
363 |
-
# ANOVA del modelo simplificado
|
364 |
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
365 |
-
|
366 |
-
# Suma de cuadrados total
|
367 |
ss_total = anova_table['sum_sq'].sum()
|
368 |
|
369 |
-
# Crear tabla de contribución
|
370 |
contribution_table = pd.DataFrame({
|
371 |
'Factor': [],
|
372 |
'Suma de Cuadrados': [],
|
373 |
'% Contribución': []
|
374 |
})
|
375 |
|
376 |
-
# Calcular porcentaje de contribución para cada factor
|
377 |
for index, row in anova_table.iterrows():
|
378 |
if index != 'Residual':
|
379 |
factor_name = index
|
@@ -389,85 +299,65 @@ class RSM_BoxBehnken:
|
|
389 |
|
390 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
391 |
'Factor': [factor_name],
|
392 |
-
'Suma de Cuadrados': [ss_factor],
|
393 |
-
'% Contribución': [contribution_percentage]
|
394 |
})], ignore_index=True)
|
395 |
|
396 |
return contribution_table
|
397 |
|
398 |
def calculate_detailed_anova(self):
|
399 |
-
"""
|
400 |
-
Calcula la tabla ANOVA detallada con la descomposición del error residual.
|
401 |
-
"""
|
402 |
if self.model_simplified is None:
|
403 |
print("Error: Ajusta el modelo simplificado primero.")
|
404 |
return None
|
405 |
|
406 |
-
# --- ANOVA detallada ---
|
407 |
-
# 1. Ajustar un modelo solo con los términos de primer orden y cuadráticos
|
408 |
formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
409 |
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
410 |
model_reduced = smf.ols(formula_reduced, data=self.data).fit()
|
411 |
|
412 |
-
# 2. ANOVA del modelo reducido (para obtener la suma de cuadrados de la regresión)
|
413 |
anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)
|
414 |
|
415 |
-
# 3. Suma de cuadrados total
|
416 |
ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2)
|
417 |
|
418 |
-
# 4. Grados de libertad totales
|
419 |
df_total = len(self.data) - 1
|
420 |
|
421 |
-
|
422 |
-
ss_regression = anova_reduced['sum_sq'][:-1].sum() # Sumar todo excepto 'Residual'
|
423 |
|
424 |
-
# 6. Grados de libertad de la regresión
|
425 |
df_regression = len(anova_reduced) - 1
|
426 |
|
427 |
-
# 7. Suma de cuadrados del error residual
|
428 |
ss_residual = self.model_simplified.ssr
|
429 |
df_residual = self.model_simplified.df_resid
|
430 |
|
431 |
-
# 8. Suma de cuadrados del error puro (se calcula a partir de las réplicas)
|
432 |
replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
|
433 |
ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum()
|
434 |
df_pure_error = len(replicas) - len(replicas.groupby([self.x1_name, self.x2_name, self.x3_name]))
|
435 |
|
436 |
-
# 9. Suma de cuadrados de la falta de ajuste
|
437 |
ss_lack_of_fit = ss_residual - ss_pure_error
|
438 |
df_lack_of_fit = df_residual - df_pure_error
|
439 |
|
440 |
-
# 10. Cuadrados medios
|
441 |
ms_regression = ss_regression / df_regression
|
442 |
ms_residual = ss_residual / df_residual
|
443 |
ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit
|
444 |
ms_pure_error = ss_pure_error / df_pure_error
|
445 |
|
446 |
-
# 11. Estadístico F y valor p para la falta de ajuste
|
447 |
f_lack_of_fit = ms_lack_of_fit / ms_pure_error
|
448 |
-
p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error)
|
449 |
|
450 |
-
# 12. Crear la tabla ANOVA detallada
|
451 |
detailed_anova_table = pd.DataFrame({
|
452 |
'Fuente de Variación': ['Regresión', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'],
|
453 |
-
'Suma de Cuadrados': [ss_regression, ss_residual, ss_lack_of_fit, ss_pure_error, ss_total],
|
454 |
'Grados de Libertad': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
|
455 |
-
'Cuadrado Medio': [ms_regression, ms_residual, ms_lack_of_fit, ms_pure_error, np.nan],
|
456 |
-
'F': [np.nan, np.nan, f_lack_of_fit, np.nan, np.nan],
|
457 |
-
'Valor p': [np.nan, np.nan, p_lack_of_fit, np.nan, np.nan]
|
458 |
})
|
459 |
|
460 |
-
# Calcular la suma de cuadrados y grados de libertad para la curvatura
|
461 |
ss_curvature = anova_reduced['sum_sq'][f'I({self.x1_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x2_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x3_name} ** 2)']
|
462 |
df_curvature = 3
|
463 |
|
464 |
-
|
465 |
-
detailed_anova_table.loc[len(detailed_anova_table)] = ['Curvatura', ss_curvature, df_curvature, ss_curvature / df_curvature, np.nan, np.nan]
|
466 |
|
467 |
-
# Reorganizar las filas para que la curvatura aparezca después de la regresión
|
468 |
detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4])
|
469 |
|
470 |
-
# Resetear el índice para que sea consecutivo
|
471 |
detailed_anova_table = detailed_anova_table.reset_index(drop=True)
|
472 |
|
473 |
return detailed_anova_table
|
@@ -475,39 +365,19 @@ class RSM_BoxBehnken:
|
|
475 |
# --- Funciones para la interfaz de Gradio ---
|
476 |
|
477 |
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
|
478 |
-
"""
|
479 |
-
Carga los datos del diseño Box-Behnken desde cajas de texto y crea la instancia de RSM_BoxBehnken.
|
480 |
-
|
481 |
-
Args:
|
482 |
-
x1_name (str): Nombre de la primera variable independiente.
|
483 |
-
x2_name (str): Nombre de la segunda variable independiente.
|
484 |
-
x3_name (str): Nombre de la tercera variable independiente.
|
485 |
-
y_name (str): Nombre de la variable dependiente.
|
486 |
-
x1_levels_str (str): Niveles de la primera variable, separados por comas.
|
487 |
-
x2_levels_str (str): Niveles de la segunda variable, separados por comas.
|
488 |
-
x3_levels_str (str): Niveles de la tercera variable, separados por comas.
|
489 |
-
data_str (str): Datos del experimento en formato CSV, separados por comas.
|
490 |
-
|
491 |
-
Returns:
|
492 |
-
tuple: (pd.DataFrame, str, str, str, str, list, list, list, gr.update)
|
493 |
-
"""
|
494 |
try:
|
495 |
-
# Convertir los niveles a listas de números
|
496 |
x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')]
|
497 |
x2_levels = [float(x.strip()) for x in x2_levels_str.split(',')]
|
498 |
x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')]
|
499 |
|
500 |
-
# Crear DataFrame a partir de la cadena de datos
|
501 |
data_list = [row.split(',') for row in data_str.strip().split('\n')]
|
502 |
column_names = ['Exp.', x1_name, x2_name, x3_name, y_name]
|
503 |
data = pd.DataFrame(data_list, columns=column_names)
|
504 |
-
data = data.apply(pd.to_numeric, errors='coerce')
|
505 |
|
506 |
-
# Validar que el DataFrame tenga las columnas correctas
|
507 |
if not all(col in data.columns for col in column_names):
|
508 |
raise ValueError("El formato de los datos no es correcto.")
|
509 |
|
510 |
-
# Crear la instancia de RSM_BoxBehnken
|
511 |
global rsm
|
512 |
rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
|
513 |
|
@@ -528,18 +398,85 @@ def fit_and_optimize_model():
|
|
528 |
contribution_table = rsm.calculate_contribution_percentage()
|
529 |
anova_table = rsm.calculate_detailed_anova()
|
530 |
|
531 |
-
# Formatear la ecuación para que se vea mejor en Markdown
|
532 |
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
|
533 |
equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"
|
534 |
|
535 |
|
536 |
return model_completo.summary().as_html(), pareto_completo, model_simplificado.summary().as_html(), pareto_simplificado, equation_formatted, optimization_table, prediction_table, contribution_table, anova_table
|
537 |
|
538 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
if 'rsm' not in globals():
|
540 |
return None, "Error: Carga los datos primero."
|
541 |
-
|
542 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
543 |
|
544 |
# --- Crear la interfaz de Gradio ---
|
545 |
|
@@ -582,6 +519,7 @@ with gr.Blocks() as demo:
|
|
582 |
with gr.Row(visible=False) as analysis_row:
|
583 |
with gr.Column():
|
584 |
fit_button = gr.Button("Ajustar Modelo y Optimizar")
|
|
|
585 |
gr.Markdown("**Modelo Completo**")
|
586 |
model_completo_output = gr.HTML()
|
587 |
pareto_completo_output = gr.Plot()
|
@@ -589,7 +527,7 @@ with gr.Blocks() as demo:
|
|
589 |
model_simplificado_output = gr.HTML()
|
590 |
pareto_simplificado_output = gr.Plot()
|
591 |
equation_output = gr.HTML()
|
592 |
-
optimization_table_output = gr.Dataframe(label="Tabla de Optimización")
|
593 |
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones")
|
594 |
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución")
|
595 |
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada")
|
@@ -597,8 +535,16 @@ with gr.Blocks() as demo:
|
|
597 |
gr.Markdown("## Generar Gráficos de Superficie de Respuesta")
|
598 |
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto_de_Levadura", "Triptofano"], value="Glucosa")
|
599 |
fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=0, maximum=1, step=0.01, value=0.5)
|
600 |
-
|
|
|
|
|
|
|
|
|
|
|
601 |
rsm_plot_output = gr.Plot()
|
|
|
|
|
|
|
602 |
|
603 |
load_button.click(
|
604 |
load_data,
|
@@ -607,7 +553,18 @@ with gr.Blocks() as demo:
|
|
607 |
)
|
608 |
|
609 |
fit_button.click(fit_and_optimize_model, outputs=[model_completo_output, pareto_completo_output, model_simplificado_output, pareto_simplificado_output, equation_output, optimization_table_output, prediction_table_output, contribution_table_output, anova_table_output])
|
610 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
611 |
|
612 |
# Ejemplo de uso
|
613 |
gr.Markdown("## Ejemplo de uso")
|
@@ -617,5 +574,9 @@ with gr.Blocks() as demo:
|
|
617 |
gr.Markdown("4. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles óptimos de los factores.")
|
618 |
gr.Markdown("5. Selecciona una variable fija y su nivel en los controles deslizantes.")
|
619 |
gr.Markdown("6. Haz clic en 'Generar Gráfico' para generar un gráfico de superficie de respuesta.")
|
|
|
|
|
|
|
|
|
620 |
|
621 |
demo.launch()
|
|
|
8 |
import plotly.express as px
|
9 |
from scipy.stats import t, f
|
10 |
import gradio as gr
|
11 |
+
import io
|
12 |
+
import os
|
13 |
+
from zipfile import ZipFile
|
14 |
|
15 |
class RSM_BoxBehnken:
|
16 |
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
|
17 |
+
# ... (El código de la clase RSM_BoxBehnken se mantiene igual, solo se modifican las funciones que generan dataframes o strings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
self.data = data.copy()
|
19 |
self.model = None
|
20 |
self.model_simplified = None
|
|
|
32 |
self.x3_levels = x3_levels
|
33 |
|
34 |
def get_levels(self, variable_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
if variable_name == self.x1_name:
|
36 |
return self.x1_levels
|
37 |
elif variable_name == self.x2_name:
|
|
|
42 |
raise ValueError(f"Variable desconocida: {variable_name}")
|
43 |
|
44 |
def fit_model(self):
|
|
|
|
|
|
|
45 |
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
46 |
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
|
47 |
f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
|
|
|
51 |
return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")
|
52 |
|
53 |
def fit_simplified_model(self):
|
|
|
|
|
|
|
54 |
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
|
55 |
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
56 |
self.model_simplified = smf.ols(formula, data=self.data).fit()
|
|
|
59 |
return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
|
60 |
|
61 |
def optimize(self, method='Nelder-Mead'):
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
if self.model_simplified is None:
|
63 |
print("Error: Ajusta el modelo simplificado primero.")
|
64 |
return
|
|
|
72 |
self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
|
73 |
self.optimal_levels = self.optimized_results.x
|
74 |
|
|
|
75 |
optimal_levels_natural = [
|
76 |
+
round(self.coded_to_natural(self.optimal_levels[0], self.x1_name), 3),
|
77 |
+
round(self.coded_to_natural(self.optimal_levels[1], self.x2_name), 3),
|
78 |
+
round(self.coded_to_natural(self.optimal_levels[2], self.x3_name), 3)
|
79 |
]
|
|
|
80 |
optimization_table = pd.DataFrame({
|
81 |
'Variable': [self.x1_name, self.x2_name, self.x3_name],
|
82 |
'Nivel Óptimo (Natural)': optimal_levels_natural,
|
83 |
+
'Nivel Óptimo (Codificado)': [round(x, 3) for x in self.optimal_levels]
|
84 |
})
|
85 |
|
86 |
return optimization_table
|
87 |
|
88 |
def plot_rsm_individual(self, fixed_variable, fixed_level):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
if self.model_simplified is None:
|
90 |
print("Error: Ajusta el modelo simplificado primero.")
|
91 |
return None
|
92 |
|
|
|
93 |
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
|
94 |
|
|
|
95 |
x_natural_levels = self.get_levels(varying_variables[0])
|
96 |
y_natural_levels = self.get_levels(varying_variables[1])
|
97 |
|
|
|
98 |
x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
|
99 |
y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
|
100 |
x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)
|
101 |
|
|
|
102 |
x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
|
103 |
y_grid_coded = self.natural_to_coded(y_grid_natural, varying_variables[1])
|
104 |
|
|
|
105 |
prediction_data = pd.DataFrame({
|
106 |
varying_variables[0]: x_grid_coded.flatten(),
|
107 |
varying_variables[1]: y_grid_coded.flatten(),
|
108 |
})
|
109 |
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
|
110 |
|
|
|
111 |
z_pred = self.model_simplified.predict(prediction_data).values.reshape(x_grid_coded.shape)
|
112 |
|
|
|
113 |
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
|
114 |
|
|
|
115 |
fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
|
116 |
subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]
|
117 |
|
|
|
118 |
valid_levels = [-1, 0, 1]
|
119 |
experiments_data = subset_data[
|
120 |
subset_data[varying_variables[0]].isin(valid_levels) &
|
121 |
subset_data[varying_variables[1]].isin(valid_levels)
|
122 |
]
|
123 |
|
|
|
124 |
experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
|
125 |
experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))
|
126 |
|
|
|
127 |
fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])
|
128 |
|
|
|
|
|
129 |
for i in range(x_grid_natural.shape[0]):
|
130 |
fig.add_trace(go.Scatter3d(
|
131 |
x=x_grid_natural[i, :],
|
|
|
136 |
showlegend=False,
|
137 |
hoverinfo='skip'
|
138 |
))
|
|
|
139 |
for j in range(x_grid_natural.shape[1]):
|
140 |
fig.add_trace(go.Scatter3d(
|
141 |
x=x_grid_natural[:, j],
|
|
|
147 |
hoverinfo='skip'
|
148 |
))
|
149 |
|
|
|
|
|
|
|
|
|
150 |
colors = ['red', 'blue', 'green', 'purple', 'orange', 'yellow', 'cyan', 'magenta']
|
151 |
point_labels = []
|
152 |
for i, row in experiments_data.iterrows():
|
|
|
157 |
y=experiments_y_natural,
|
158 |
z=experiments_data[self.y_name],
|
159 |
mode='markers+text',
|
160 |
+
marker=dict(size=4, color=colors[:len(experiments_x_natural)]),
|
161 |
+
text=point_labels,
|
162 |
textposition='top center',
|
163 |
name='Experimentos'
|
164 |
))
|
165 |
|
|
|
166 |
fig.update_layout(
|
167 |
scene=dict(
|
168 |
xaxis_title=varying_variables[0] + " (g/L)",
|
169 |
yaxis_title=varying_variables[1] + " (g/L)",
|
170 |
zaxis_title=self.y_name,
|
|
|
|
|
|
|
|
|
171 |
),
|
172 |
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.2f} (g/L) (Modelo Simplificado)</sup>",
|
173 |
height=800,
|
|
|
177 |
return fig
|
178 |
|
179 |
def generate_all_plots(self):
|
|
|
|
|
|
|
180 |
if self.model_simplified is None:
|
181 |
print("Error: Ajusta el modelo simplificado primero.")
|
182 |
return
|
183 |
|
|
|
184 |
levels_to_plot_natural = {
|
185 |
self.x1_name: self.x1_levels,
|
186 |
self.x2_name: self.x2_levels,
|
187 |
self.x3_name: self.x3_levels
|
188 |
}
|
189 |
+
|
190 |
+
figs = []
|
191 |
|
|
|
192 |
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
|
193 |
for level in levels_to_plot_natural[fixed_variable]:
|
194 |
fig = self.plot_rsm_individual(fixed_variable, level)
|
195 |
if fig is not None:
|
196 |
+
figs.append(fig)
|
197 |
+
return figs
|
198 |
|
199 |
def coded_to_natural(self, coded_value, variable_name):
|
|
|
200 |
levels = self.get_levels(variable_name)
|
201 |
return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2
|
202 |
|
203 |
def natural_to_coded(self, natural_value, variable_name):
|
|
|
204 |
levels = self.get_levels(variable_name)
|
205 |
return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0])
|
206 |
|
207 |
def pareto_chart(self, model, title):
|
208 |
+
tvalues = model.tvalues[1:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
abs_tvalues = np.abs(tvalues)
|
210 |
sorted_idx = np.argsort(abs_tvalues)[::-1]
|
211 |
sorted_tvalues = abs_tvalues[sorted_idx]
|
212 |
sorted_names = tvalues.index[sorted_idx]
|
213 |
|
214 |
+
alpha = 0.05
|
215 |
+
dof = model.df_resid
|
|
|
216 |
t_critical = t.ppf(1 - alpha / 2, dof)
|
217 |
|
|
|
218 |
fig = px.bar(
|
219 |
x=sorted_tvalues,
|
220 |
y=sorted_names,
|
|
|
224 |
)
|
225 |
fig.update_yaxes(autorange="reversed")
|
226 |
|
|
|
227 |
fig.add_vline(x=t_critical, line_dash="dot",
|
228 |
annotation_text=f"t crítico = {t_critical:.2f}",
|
229 |
annotation_position="bottom right")
|
|
|
231 |
return fig
|
232 |
|
233 |
def get_simplified_equation(self):
|
|
|
|
|
|
|
234 |
if self.model_simplified is None:
|
235 |
print("Error: Ajusta el modelo simplificado primero.")
|
236 |
return None
|
237 |
|
238 |
coefficients = self.model_simplified.params
|
239 |
+
equation = f"{self.y_name} = {coefficients['Intercept']:.3f}"
|
240 |
|
241 |
for term, coef in coefficients.items():
|
242 |
if term != 'Intercept':
|
243 |
if term == f'{self.x1_name}':
|
244 |
+
equation += f" + {coef:.3f}*{self.x1_name}"
|
245 |
elif term == f'{self.x2_name}':
|
246 |
+
equation += f" + {coef:.3f}*{self.x2_name}"
|
247 |
elif term == f'{self.x3_name}':
|
248 |
+
equation += f" + {coef:.3f}*{self.x3_name}"
|
249 |
elif term == f'I({self.x1_name} ** 2)':
|
250 |
+
equation += f" + {coef:.3f}*{self.x1_name}^2"
|
251 |
elif term == f'I({self.x2_name} ** 2)':
|
252 |
+
equation += f" + {coef:.3f}*{self.x2_name}^2"
|
253 |
elif term == f'I({self.x3_name} ** 2)':
|
254 |
+
equation += f" + {coef:.3f}*{self.x3_name}^2"
|
255 |
|
256 |
return equation
|
257 |
|
258 |
def generate_prediction_table(self):
|
|
|
|
|
|
|
259 |
if self.model_simplified is None:
|
260 |
print("Error: Ajusta el modelo simplificado primero.")
|
261 |
return None
|
|
|
263 |
self.data['Predicho'] = self.model_simplified.predict(self.data)
|
264 |
self.data['Residual'] = self.data[self.y_name] - self.data['Predicho']
|
265 |
|
266 |
+
prediction_table = self.data[[self.y_name, 'Predicho', 'Residual']].copy()
|
267 |
+
prediction_table[self.y_name] = prediction_table[self.y_name].round(3)
|
268 |
+
prediction_table['Predicho'] = prediction_table['Predicho'].round(3)
|
269 |
+
prediction_table['Residual'] = prediction_table['Residual'].round(3)
|
270 |
+
|
271 |
+
return prediction_table
|
272 |
|
273 |
def calculate_contribution_percentage(self):
|
|
|
|
|
|
|
274 |
if self.model_simplified is None:
|
275 |
print("Error: Ajusta el modelo simplificado primero.")
|
276 |
return None
|
277 |
|
|
|
278 |
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
|
|
|
|
279 |
ss_total = anova_table['sum_sq'].sum()
|
280 |
|
|
|
281 |
contribution_table = pd.DataFrame({
|
282 |
'Factor': [],
|
283 |
'Suma de Cuadrados': [],
|
284 |
'% Contribución': []
|
285 |
})
|
286 |
|
|
|
287 |
for index, row in anova_table.iterrows():
|
288 |
if index != 'Residual':
|
289 |
factor_name = index
|
|
|
299 |
|
300 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
301 |
'Factor': [factor_name],
|
302 |
+
'Suma de Cuadrados': [round(ss_factor, 3)],
|
303 |
+
'% Contribución': [round(contribution_percentage, 3)]
|
304 |
})], ignore_index=True)
|
305 |
|
306 |
return contribution_table
|
307 |
|
308 |
def calculate_detailed_anova(self):
|
|
|
|
|
|
|
309 |
if self.model_simplified is None:
|
310 |
print("Error: Ajusta el modelo simplificado primero.")
|
311 |
return None
|
312 |
|
|
|
|
|
313 |
formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
314 |
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
315 |
model_reduced = smf.ols(formula_reduced, data=self.data).fit()
|
316 |
|
|
|
317 |
anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)
|
318 |
|
|
|
319 |
ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2)
|
320 |
|
|
|
321 |
df_total = len(self.data) - 1
|
322 |
|
323 |
+
ss_regression = anova_reduced['sum_sq'][:-1].sum()
|
|
|
324 |
|
|
|
325 |
df_regression = len(anova_reduced) - 1
|
326 |
|
|
|
327 |
ss_residual = self.model_simplified.ssr
|
328 |
df_residual = self.model_simplified.df_resid
|
329 |
|
|
|
330 |
replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
|
331 |
ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum()
|
332 |
df_pure_error = len(replicas) - len(replicas.groupby([self.x1_name, self.x2_name, self.x3_name]))
|
333 |
|
|
|
334 |
ss_lack_of_fit = ss_residual - ss_pure_error
|
335 |
df_lack_of_fit = df_residual - df_pure_error
|
336 |
|
|
|
337 |
ms_regression = ss_regression / df_regression
|
338 |
ms_residual = ss_residual / df_residual
|
339 |
ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit
|
340 |
ms_pure_error = ss_pure_error / df_pure_error
|
341 |
|
|
|
342 |
f_lack_of_fit = ms_lack_of_fit / ms_pure_error
|
343 |
+
p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error)
|
344 |
|
|
|
345 |
detailed_anova_table = pd.DataFrame({
|
346 |
'Fuente de Variación': ['Regresión', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'],
|
347 |
+
'Suma de Cuadrados': [round(ss_regression, 3), round(ss_residual, 3), round(ss_lack_of_fit, 3), round(ss_pure_error, 3), round(ss_total, 3)],
|
348 |
'Grados de Libertad': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
|
349 |
+
'Cuadrado Medio': [round(ms_regression, 3), round(ms_residual, 3), round(ms_lack_of_fit, 3), round(ms_pure_error, 3), np.nan],
|
350 |
+
'F': [np.nan, np.nan, round(f_lack_of_fit, 3), np.nan, np.nan],
|
351 |
+
'Valor p': [np.nan, np.nan, round(p_lack_of_fit, 3), np.nan, np.nan]
|
352 |
})
|
353 |
|
|
|
354 |
ss_curvature = anova_reduced['sum_sq'][f'I({self.x1_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x2_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x3_name} ** 2)']
|
355 |
df_curvature = 3
|
356 |
|
357 |
+
detailed_anova_table.loc[len(detailed_anova_table)] = ['Curvatura', round(ss_curvature, 3), df_curvature, round(ss_curvature / df_curvature, 3), np.nan, np.nan]
|
|
|
358 |
|
|
|
359 |
detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4])
|
360 |
|
|
|
361 |
detailed_anova_table = detailed_anova_table.reset_index(drop=True)
|
362 |
|
363 |
return detailed_anova_table
|
|
|
365 |
# --- Funciones para la interfaz de Gradio ---
|
366 |
|
367 |
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
try:
|
|
|
369 |
x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')]
|
370 |
x2_levels = [float(x.strip()) for x in x2_levels_str.split(',')]
|
371 |
x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')]
|
372 |
|
|
|
373 |
data_list = [row.split(',') for row in data_str.strip().split('\n')]
|
374 |
column_names = ['Exp.', x1_name, x2_name, x3_name, y_name]
|
375 |
data = pd.DataFrame(data_list, columns=column_names)
|
376 |
+
data = data.apply(pd.to_numeric, errors='coerce')
|
377 |
|
|
|
378 |
if not all(col in data.columns for col in column_names):
|
379 |
raise ValueError("El formato de los datos no es correcto.")
|
380 |
|
|
|
381 |
global rsm
|
382 |
rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
|
383 |
|
|
|
398 |
contribution_table = rsm.calculate_contribution_percentage()
|
399 |
anova_table = rsm.calculate_detailed_anova()
|
400 |
|
|
|
401 |
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
|
402 |
equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"
|
403 |
|
404 |
|
405 |
return model_completo.summary().as_html(), pareto_completo, model_simplificado.summary().as_html(), pareto_simplificado, equation_formatted, optimization_table, prediction_table, contribution_table, anova_table
|
406 |
|
407 |
+
current_plot_index = 0
|
408 |
+
plot_images = []
|
409 |
+
|
410 |
+
def generate_rsm_plot(fixed_variable, fixed_level, request: gr.Request):
|
411 |
+
global current_plot_index, plot_images
|
412 |
+
|
413 |
+
if 'rsm' not in globals():
|
414 |
+
return None, "Error: Carga los datos primero.", None, None
|
415 |
+
|
416 |
+
if not plot_images:
|
417 |
+
plot_images = rsm.generate_all_plots()
|
418 |
+
|
419 |
+
if not plot_images:
|
420 |
+
return None, "Error: No se pudieron generar los gráficos.", None, None
|
421 |
+
|
422 |
+
current_plot_index = (current_plot_index) % len(plot_images)
|
423 |
+
fig = plot_images[current_plot_index]
|
424 |
+
|
425 |
+
img_bytes = fig.to_image(format="png")
|
426 |
+
|
427 |
+
# Crear un archivo temporal para guardar la imagen
|
428 |
+
temp_file = os.path.join(request.kwargs['temp_dir'], f"plot_{current_plot_index}.png")
|
429 |
+
with open(temp_file, "wb") as f:
|
430 |
+
f.write(img_bytes)
|
431 |
+
|
432 |
+
return fig, "", temp_file, gr.update(visible=True)
|
433 |
+
|
434 |
+
def download_excel():
|
435 |
if 'rsm' not in globals():
|
436 |
return None, "Error: Carga los datos primero."
|
437 |
+
|
438 |
+
output = io.BytesIO()
|
439 |
+
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
|
440 |
+
rsm.data.to_excel(writer, sheet_name='Datos', index=False)
|
441 |
+
rsm.generate_prediction_table().to_excel(writer, sheet_name='Predicciones', index=False)
|
442 |
+
rsm.optimize().to_excel(writer, sheet_name='Optimizacion', index=False)
|
443 |
+
rsm.calculate_contribution_percentage().to_excel(writer, sheet_name='Contribucion', index=False)
|
444 |
+
rsm.calculate_detailed_anova().to_excel(writer, sheet_name='ANOVA', index=False)
|
445 |
+
|
446 |
+
output.seek(0)
|
447 |
+
|
448 |
+
return gr.File(value=output, visible=True, filename="resultados_rsm.xlsx")
|
449 |
+
|
450 |
+
def download_images(request: gr.Request):
|
451 |
+
global plot_images
|
452 |
+
if 'rsm' not in globals():
|
453 |
+
return None, "Error: Carga los datos primero."
|
454 |
+
|
455 |
+
if not plot_images:
|
456 |
+
return None, "Error: No se han generado gráficos."
|
457 |
+
|
458 |
+
zip_filename = "graficos_rsm.zip"
|
459 |
+
zip_path = os.path.join(request.kwargs['temp_dir'], zip_filename)
|
460 |
+
|
461 |
+
with ZipFile(zip_path, 'w') as zipf:
|
462 |
+
for i, fig in enumerate(plot_images):
|
463 |
+
img_bytes = fig.to_image(format="png")
|
464 |
+
img_path = os.path.join(request.kwargs['temp_dir'], f"plot_{i}.png")
|
465 |
+
with open(img_path, "wb") as f:
|
466 |
+
f.write(img_bytes)
|
467 |
+
zipf.write(img_path, f"plot_{i}.png")
|
468 |
+
|
469 |
+
return gr.File(value=zip_path, visible=True, filename=zip_filename)
|
470 |
+
|
471 |
+
def next_plot():
|
472 |
+
global current_plot_index
|
473 |
+
current_plot_index += 1
|
474 |
+
return current_plot_index
|
475 |
+
|
476 |
+
def prev_plot():
|
477 |
+
global current_plot_index
|
478 |
+
current_plot_index -= 1
|
479 |
+
return current_plot_index
|
480 |
|
481 |
# --- Crear la interfaz de Gradio ---
|
482 |
|
|
|
519 |
with gr.Row(visible=False) as analysis_row:
|
520 |
with gr.Column():
|
521 |
fit_button = gr.Button("Ajustar Modelo y Optimizar")
|
522 |
+
download_excel_button = gr.Button("Descargar Tablas en Excel")
|
523 |
gr.Markdown("**Modelo Completo**")
|
524 |
model_completo_output = gr.HTML()
|
525 |
pareto_completo_output = gr.Plot()
|
|
|
527 |
model_simplificado_output = gr.HTML()
|
528 |
pareto_simplificado_output = gr.Plot()
|
529 |
equation_output = gr.HTML()
|
530 |
+
optimization_table_output = gr.Dataframe(label="Tabla de Optimización", headers=["Variable", "Nivel Óptimo (Natural)", "Nivel Óptimo (Codificado)"])
|
531 |
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones")
|
532 |
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución")
|
533 |
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada")
|
|
|
535 |
gr.Markdown("## Generar Gráficos de Superficie de Respuesta")
|
536 |
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto_de_Levadura", "Triptofano"], value="Glucosa")
|
537 |
fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=0, maximum=1, step=0.01, value=0.5)
|
538 |
+
with gr.Row():
|
539 |
+
plot_button = gr.Button("Generar Gráfico")
|
540 |
+
download_images_button = gr.Button("Descargar Gráficos en ZIP")
|
541 |
+
|
542 |
+
prev_plot_button = gr.Button("<")
|
543 |
+
next_plot_button = gr.Button(">")
|
544 |
rsm_plot_output = gr.Plot()
|
545 |
+
download_plot_button = gr.Button("Descargar Gráfico Actual")
|
546 |
+
plot_image_output = gr.File(label="Gráfico Actual", visible=False)
|
547 |
+
|
548 |
|
549 |
load_button.click(
|
550 |
load_data,
|
|
|
553 |
)
|
554 |
|
555 |
fit_button.click(fit_and_optimize_model, outputs=[model_completo_output, pareto_completo_output, model_simplificado_output, pareto_simplificado_output, equation_output, optimization_table_output, prediction_table_output, contribution_table_output, anova_table_output])
|
556 |
+
|
557 |
+
plot_button.click(generate_rsm_plot, inputs=[fixed_variable_input, fixed_level_input], outputs=[rsm_plot_output, equation_output, plot_image_output, download_plot_button])
|
558 |
+
|
559 |
+
download_excel_button.click(download_excel, outputs=download_excel_button, api_name="download_excel")
|
560 |
+
|
561 |
+
download_images_button.click(download_images, outputs=download_images_button, api_name="download_images")
|
562 |
+
|
563 |
+
download_plot_button.click(lambda x: x, inputs=[plot_image_output], outputs=[plot_image_output], api_name="download_plot")
|
564 |
+
|
565 |
+
prev_plot_button.click(prev_plot, outputs=prev_plot_button).then(generate_rsm_plot, inputs=[fixed_variable_input, fixed_level_input], outputs=[rsm_plot_output, equation_output, plot_image_output, download_plot_button])
|
566 |
+
|
567 |
+
next_plot_button.click(next_plot, outputs=next_plot_button).then(generate_rsm_plot, inputs=[fixed_variable_input, fixed_level_input], outputs=[rsm_plot_output, equation_output, plot_image_output, download_plot_button])
|
568 |
|
569 |
# Ejemplo de uso
|
570 |
gr.Markdown("## Ejemplo de uso")
|
|
|
574 |
gr.Markdown("4. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles óptimos de los factores.")
|
575 |
gr.Markdown("5. Selecciona una variable fija y su nivel en los controles deslizantes.")
|
576 |
gr.Markdown("6. Haz clic en 'Generar Gráfico' para generar un gráfico de superficie de respuesta.")
|
577 |
+
gr.Markdown("7. Usa '<' y '>' para navegar entre los gráficos generados.")
|
578 |
+
gr.Markdown("8. Haz clic en 'Descargar Tablas en Excel' para obtener un archivo Excel con todas las tablas generadas.")
|
579 |
+
gr.Markdown("9. Haz clic en 'Descargar Gráfico Actual' para descargar la imagen del gráfico actual en formato PNG.")
|
580 |
+
gr.Markdown("10. Haz clic en 'Descargar Gráficos en ZIP' para descargar todas las imágenes de los gráficos en un archivo ZIP.")
|
581 |
|
582 |
demo.launch()
|