ChatBot / app.py
C2MV's picture
Update app.py
8ae36cb verified
raw
history blame
13.8 kB
import os
os.system('pip install curl_cffi tqdm bitsandbytes tiktoken g4f pinecone-client pandas datasets sentence-transformers')
# Setup and load your keys
import os
from g4f import ChatCompletion
#from google.colab import userdata
from pinecone import Pinecone
import pandas as pd
from datasets import Dataset
from sentence_transformers import SentenceTransformer
import gradio as gr
model_name = "BAAI/bge-m3"
# APIs personales
#PINECONE_ENVIRONMENT = us-east-1
#PINECONE_API_KEY = 3a3e9022-381d-436e-84cb-ba93464d283e
os.environ["PINECONE_ENVIRONMENT"] = "us-east-1"
os.environ["PINECONE_API_KEY"] = "3a3e9022-381d-436e-84cb-ba93464d283e"
# Retrieve the Pinecone API key from the user
PINECONE_API_KEY = "3a3e9022-381d-436e-84cb-ba93464d283e" # Use the key you set in the secrets
PINECONE_ENVIRONMENT = "us-east-1" # Use the environment you set in the secrets
# Initialize Pinecone with the API key
pc = Pinecone(api_key=PINECONE_API_KEY)
# Global variables to store the selected model and dimensions
EMBED_MODEL = 'BGE_M3-1024'
DIMENSIONS = 1024
# Confirm selection automatically
print(f"Model selected: {EMBED_MODEL}")
print(f"Dimensions set as: {DIMENSIONS}")
# Function to print current selection (can be used in other cells)
def print_current_selection():
print(f"Currently selected model: {EMBED_MODEL}")
print(f"Dimensions: {DIMENSIONS}")
# Establecer el nombre del 铆ndice autom谩ticamente
INDEX_NAME = 'vestidos'
# Obtener la clave API de Pinecone
#PINECONE_API_KEY = userdata.get('PINECONE_API_KEY')
def connect_to_pinecone(index_name):
global INDEX_NAME
try:
pc = Pinecone(api_key=PINECONE_API_KEY)
index = pc.Index(index_name)
# Asegurarse de que la conexi贸n se establezca
index_stats = index.describe_index_stats()
print(f"Successfully connected to Pinecone index '{index_name}'!")
print("Index Stats:", index_stats)
# Actualizar la variable global INDEX_NAME
INDEX_NAME = index_name
print(f"Global INDEX_NAME updated to: {INDEX_NAME}")
except Exception as e:
print(f"Failed to connect to Pinecone index '{index_name}':", str(e))
# Conectar autom谩ticamente al 铆ndice "vestidos"
connect_to_pinecone(INDEX_NAME)
# Funci贸n para imprimir el nombre del 铆ndice actual (puede ser usada en otras celdas)
def print_current_index():
print(f"Current index name: {INDEX_NAME}")
# Verificar si las variables globales necesarias est谩n configuradas
if 'INDEX_NAME' not in globals() or INDEX_NAME is None:
raise ValueError("INDEX_NAME is not set. Please set the index name first.")
if 'EMBED_MODEL' not in globals() or EMBED_MODEL is None:
raise ValueError("EMBED_MODEL is not set. Please select an embedding model first.")
# Inicializar cliente de Pinecone
#PINECONE_API_KEY = userdata.get('PINECONE_API_KEY')
pc = Pinecone(api_key=PINECONE_API_KEY)
# Inicializar el 铆ndice de Pinecone
index = pc.Index(INDEX_NAME)
# Obtener la dimensi贸n del 铆ndice
index_stats = index.describe_index_stats()
vector_dim = index_stats['dimension']
print(f"Index dimension: {vector_dim}")
# Definir manualmente los campos de contexto y enlace
CONTEXT_FIELDS = ['Etiqueta', 'Pregunta 1', 'Pregunta 2', 'Pregunta 3', 'Respuesta Combinada']
LINK_FIELDS = ['Etiqueta', 'Respuesta Combinada']
# Imprimir confirmaci贸n de campos seleccionados
print(f"Context fields set to: {CONTEXT_FIELDS}")
print(f"Link fields set to: {LINK_FIELDS}")
# Funci贸n para obtener las selecciones actuales de campos (puede ser usada en otras celdas)
def get_field_selections():
return {
"CONTEXT_FIELDS": CONTEXT_FIELDS,
"LINK_FIELDS": LINK_FIELDS
}
#####################################
# Check if required global variables are set
if 'EMBED_MODEL' not in globals() or EMBED_MODEL is None:
raise ValueError("EMBED_MODEL is not set. Please select an embedding model first.")
if 'INDEX_NAME' not in globals() or INDEX_NAME is None:
raise ValueError("INDEX_NAME is not set. Please create or select an index first.")
if 'CONTEXT_FIELDS' not in globals() or 'LINK_FIELDS' not in globals():
raise ValueError("CONTEXT_FIELDS and LINK_FIELDS are not set. Please run the field selection cell first.")
# Initialize the Sentence-Transformer model
embedding_model = SentenceTransformer(model_name)
# Initialize Pinecone with the API key and connect to the index
pinecone_client = Pinecone(api_key=PINECONE_API_KEY)
index = pinecone_client.Index(INDEX_NAME)
# Constants
LIMIT = 3750
def vector_search(query):
# Generate embedding using Sentence-Transformer model
xq = embedding_model.encode(query)
# Perform vector search on Pinecone index
res = index.query(vector=xq.tolist(), top_k=3, include_metadata=True)
if res['matches']:
return [
{
'content': ' '.join(f"{k}: {v}" for k, v in match['metadata'].items() if k in CONTEXT_FIELDS and k != 'Etiqueta'),
'metadata': match['metadata']
}
for match in res['matches']
if 'metadata' in match
]
return []
def create_prompt(query, contexts):
prompt_start = "\n\nContexto:\n"
prompt_end = f"\n\nPregunta: {query}\nRespuesta:"
current_contexts = "\n\n---\n\n".join([context['content'] for context in contexts])
if len(prompt_start + current_contexts + prompt_end) >= LIMIT:
# Truncate contexts if they exceed the limit
available_space = LIMIT - len(prompt_start) - len(prompt_end)
truncated_contexts = current_contexts[:available_space]
return prompt_start + truncated_contexts + prompt_end
else:
return prompt_start + current_contexts + prompt_end
def complete(prompt):
return [f"Hola"]
def check_image_exists(filepath):
return os.path.exists(filepath)
def chat_function(message, history):
# Perform vector search
search_results = vector_search(message)
# Create prompt with relevant contexts
query_with_contexts = create_prompt(message, search_results)
# Generate response
response = complete(query_with_contexts)
partial_message = response[0].split("\n")[0] # Solo tomar la primera l铆nea de la respuesta
# Handle the logic for processing tags and images internally
relevant_links = [result['metadata'].get(field) for result in search_results for field in LINK_FIELDS if field in result['metadata']]
full_response = partial_message
image_url = None
tags_detected = []
filtered_links = []
if relevant_links:
for link in relevant_links:
if any(tag in link for tag in ["lila_61", "lila_63", "lila_62", "lila_64", "fuxia_70", "fuxia_71", "fuxia_72", "fuxia_73", "fuxia_74", "melon_68", "melon_66", "melon_67", "melon_65", "vino_19", "vino_20", "barney_69", "loro_27", "lacre_02", "amarillo_03", "amarillo_04", "azulino_11", "azulino_14", "azulino_12", "azulino_13", "beigs_09", "beigs_10", "beigs_07", "beigs_06", "beigs_08", "beigs_05", "marina_32", "marina_29", "marina_28", "marina_31", "marina_30", "rojo_26", "rojo_23", "rojo_21", "rojo_22", "rojo_25", "rojo_24", "celeste_40", "celeste_38", "celeste_39", "celeste_33", "celeste_35", "celeste_37", "celeste_41", "celeste_42", "celeste_34", "celeste_36", "sirenita_01", "marino_18", "marino_17", "marino_16", "marino_15", "rosa_87", "rosa_86", "rosa_79", "rosa_82", "rosa_83", "rosa_78", "rosa_84", "rosa_85", "rosa_75", "rosa_80", "rosa_81", "rosa_77", "rosa_76", "blanco_55", "blanco_56", "blanco_53", "blanco_52", "blanco_57", "blanco_49", "blanco_51", "blanco_60", "blanco_47", "blanco_44", "blanco_50", "blanco_48", "blanco_59", "blanco_43", "blanco_58", "blanco_46", "blanco_45", "blanco_54"]):
tags_detected.append(link) # Save the tag but don't display it
else:
filtered_links.append(link)
# Add the first relevant link under a single "Respuestas relevantes" section
if filtered_links:
full_response += f".\n\nTe detallamos nuestro contenido a continuaci贸n:\n" + filtered_links[0]
# Now handle the images based on the detected tags
tags_to_images = {
"lila_61": "/content/lila_61.jpeg",
"lila_63": "/content/lila_63.jpeg",
"lila_62": "/content/lila_62.jpeg",
"lila_64": "/content/lila_64.jpeg",
"fuxia_70": "/content/fuxia_70.jpeg",
"fuxia_71": "/content/fuxia_71.jpeg",
"fuxia_72": "/content/fuxia_72.jpeg",
"fuxia_73": "/content/fuxia_73.jpeg",
"fuxia_74": "/content/fuxia_74.jpeg",
"melon_68": "/content/melon_68.jpeg",
"melon_66": "/content/melon_66.jpeg",
"melon_67": "/content/melon_67.jpeg",
"melon_65": "/content/melon_65.jpeg",
"vino_19": "/content/vino_19.jpeg",
"vino_20": "/content/vino_20.jpeg",
"barney_69": "/content/barney_69.jpeg",
"loro_27": "/content/loro_27.png",
"lacre_02": "/content/lacre_02.jpeg",
"amarillo_03": "/content/amarillo_03.jpeg",
"amarillo_04": "/content/amarillo_04.jpeg",
"azulino_11": "/content/azulino_11.jpeg",
"azulino_14": "/content/azulino_14.jpeg",
"azulino_12": "/content/azulino_12.jpeg",
"azulino_13": "/content/azulino_13.jpeg",
"beigs_09": "/content/beigs_09.jpeg",
"beigs_10": "/content/beigs_10.jpeg",
"beigs_07": "/content/beigs_07.jpeg",
"beigs_06": "/content/beigs_06.jpeg",
"beigs_08": "/content/beigs_08.jpeg",
"beigs_05": "/content/beigs_05.jpeg",
"marina_32": "/content/marina_32.jpeg",
"marina_29": "/content/marina_29.jpeg",
"marina_28": "/content/marina_28.jpeg",
"marina_31": "/content/marina_31.jpeg",
"marina_30": "/content/marina_30.jpeg",
"rojo_26": "/content/rojo_26.jpeg",
"rojo_23": "/content/rojo_23.jpeg",
"rojo_21": "/content/rojo_21.jpeg",
"rojo_22": "/content/rojo_22.jpeg",
"rojo_25": "/content/rojo_25.jpeg",
"rojo_24": "/content/rojo_24.jpeg",
"celeste_40": "/content/celeste_40.jpeg",
"celeste_38": "/content/celeste_38.jpeg",
"celeste_39": "/content/celeste_39.jpeg",
"celeste_33": "/content/celeste_33.jpeg",
"celeste_35": "/content/celeste_35.jpeg",
"celeste_37": "/content/celeste_37.jpeg",
"celeste_41": "/content/celeste_41.jpeg",
"celeste_42": "/content/celeste_42.jpeg",
"celeste_34": "/content/celeste_34.jpeg",
"celeste_36": "/content/celeste_36.jpeg",
"sirenita_01": "/content/sirenita_01.png",
"marino_18": "/content/marino_18.jpeg",
"marino_17": "/content/marino_17.jpeg",
"marino_16": "/content/marino_16.jpeg",
"marino_15": "/content/marino_15.jpeg",
"rosa_87": "/content/rosa_87.jpeg",
"rosa_86": "/content/rosa_86.png",
"rosa_79": "/content/rosa_79.jpeg",
"rosa_82": "/content/rosa_82.png",
"rosa_83": "/content/rosa_83.jpeg",
"rosa_78": "/content/rosa_78.jpeg",
"rosa_84": "/content/rosa_84.jpeg",
"rosa_85": "/content/rosa_85.jpeg",
"rosa_75": "/content/rosa_75.jpeg",
"rosa_80": "/content/rosa_80.png",
"rosa_81": "/content/rosa_81.png",
"rosa_77": "/content/rosa_77.jpeg",
"rosa_76": "/content/rosa_76.png",
"blanco_55": "/content/blanco_55.jpeg",
"blanco_56": "/content/blanco_56.jpeg",
"blanco_53": "/content/blanco_53.jpeg",
"blanco_52": "/content/blanco_52.jpeg",
"blanco_57": "/content/blanco_57.jpeg",
"blanco_49": "/content/blanco_49.jpeg",
"blanco_51": "/content/blanco_51.jpeg",
"blanco_60": "/content/blanco_60.jpeg",
"blanco_47": "/content/blanco_47.jpeg",
"blanco_44": "/content/blanco_44.jpeg",
"blanco_50": "/content/blanco_50.jpeg",
"blanco_48": "/content/blanco_48.jpeg",
"blanco_59": "/content/blanco_59.jpeg",
"blanco_43": "/content/blanco_43.jpeg",
"blanco_58": "/content/blanco_58.png",
"blanco_46": "/content/blanco_46.jpeg",
"blanco_45": "/content/blanco_45.jpeg",
"blanco_54": "/content/blanco_54.jpeg",
}
for tag in tags_detected:
for key, path in tags_to_images.items():
if key in tag and check_image_exists(path):
image_url = path
break
return full_response, image_url
def update_image(image_url):
if image_url:
return image_url
else:
return None
# Gradio layout setup
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
chatbot_input = gr.Textbox(label="Tu mensaje")
chatbot_output = gr.Chatbot(label="ChatBot")
chatbot_history = gr.State(value=[])
image_url = gr.State(value=None)
submit_button = gr.Button("Enviar")
with gr.Column(scale=1):
image_output = gr.Image(label="Imagen asociada")
def process_input(message, history):
full_response, image = chat_function(message, history)
history.append((message, full_response))
return history, history, image
submit_button.click(process_input, inputs=[chatbot_input, chatbot_history], outputs=[chatbot_output, chatbot_history, image_url])
image_url.change(fn=update_image, inputs=image_url, outputs=image_output)
# Launch the interface
demo.launch(debug=True)