XVerse / app.py
helloworld-S's picture
Update app.py
9e82be4 verified
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
from PIL import Image
import subprocess
import spaces
import torch
import gradio as gr
import string
import random, time, os, math
from src.flux.generate import generate_from_test_sample, seed_everything
from src.flux.pipeline_tools import CustomFluxPipeline, load_modulation_adapter, load_dit_lora
from src.utils.data_utils import get_train_config, image_grid, pil2tensor, json_dump, pad_to_square, cv2pil, merge_bboxes
from eval.tools.face_id import FaceID
from eval.tools.florence_sam import ObjectDetector
import shutil
import yaml
import numpy as np
from huggingface_hub import snapshot_download
print(os.getcwd())
os.environ["TORCH_HOME"] = os.path.join(os.getcwd(), "checkpoints")
dtype = torch.bfloat16
device = "cuda"
config_path = "train/config/XVerse_config_demo.yaml"
config = config_train = get_train_config(config_path)
config["model"]["dit_quant"] = "int8-quanto"
config["model"]["use_dit_lora"] = False
model = CustomFluxPipeline(
config, device, torch_dtype=dtype,
)
model.pipe.set_progress_bar_config(leave=False)
face_model = FaceID(device)
detector = ObjectDetector(device)
config = get_train_config(config_path)
model.config = config
store_attn_map = False
ckpt_root = snapshot_download(repo_id="ByteDance/XVerse")
modulation_adapter = load_modulation_adapter(model, config, dtype, device, f"{ckpt_root}/modulation_adapter", is_training=False)
model.add_modulation_adapter(modulation_adapter)
if config["model"]["use_dit_lora"]:
load_dit_lora(model, model.pipe, config, dtype, device, f"{ckpt_root}", is_training=False)
num_inputs = 4
# 定义清空图像的函数,只返回四个 None
def clear_images():
return [None, ]*num_inputs
@spaces.GPU()
def det_seg_img(image, label):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
instance_result_dict = detector.get_multiple_instances(image, label, min_size=image.size[0]//20)
indices = list(range(len(instance_result_dict["instance_images"])))
ins, bbox = merge_instances(image, indices, instance_result_dict["instance_bboxes"], instance_result_dict["instance_images"])
return ins
@spaces.GPU()
def crop_face_img(image):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
# image = resize_keep_aspect_ratio(image, 1024)
image = pad_to_square(image).resize((2048, 2048))
face_bbox = face_model.detect(
(pil2tensor(image).unsqueeze(0) * 255).to(torch.uint8).to(device), 1.4
)[0]
face = image.crop(face_bbox)
return face
@spaces.GPU()
def vlm_img_caption(image):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
try:
caption = detector.detector.caption(image, "<CAPTION>").strip()
if caption.endswith("."):
caption = caption[:-1]
except Exception as e:
print(e)
caption = ""
caption = caption.lower()
return caption
def generate_random_string(length=4):
letters = string.ascii_letters # 包含大小写字母的字符串
result_str = ''.join(random.choice(letters) for i in range(length))
return result_str
def resize_keep_aspect_ratio(pil_image, target_size=1024):
H, W = pil_image.height, pil_image.width
target_area = target_size * target_size
current_area = H * W
scaling_factor = (target_area / current_area) ** 0.5 # sqrt(target_area / current_area)
new_H = int(round(H * scaling_factor))
new_W = int(round(W * scaling_factor))
return pil_image.resize((new_W, new_H))
# 使用循环生成六个图像输入
images = []
captions = []
face_btns = []
det_btns = []
vlm_btns = []
idip_checkboxes = []
def open_accordion_on_example_selection(*args):
return None, "", False
@spaces.GPU
def generate_image(
prompt,
cond_size, target_height, target_width,
seed,
vae_skip_iter, control_weight_lambda,
double_attention, # 新增参数
single_attention, # 新增参数
latent_dblora_scale_str,
latent_sblora_scale_str, vae_lora_scale,
*images_captions_faces, # Combine all unpacked arguments into one tuple
):
torch.cuda.empty_cache()
num_images = 1
# Determine the number of images, captions, and faces based on the indexs length
images = list(images_captions_faces[:num_inputs])
captions = list(images_captions_faces[num_inputs:2 * num_inputs])
idips_checkboxes = list(images_captions_faces[2 * num_inputs:3 * num_inputs])
print(f"Length of images: {len(images)}")
print(f"Length of captions: {len(captions)}")
print(f"Control weight lambda: {control_weight_lambda}")
if control_weight_lambda != "no":
parts = control_weight_lambda.split(',')
new_parts = []
for part in parts:
if ':' in part:
left, right = part.split(':')
values = right.split('/')
# 保存整体值
global_value = values[0]
id_value = values[1]
ip_value = values[2]
new_values = [global_value]
for is_id in idips_checkboxes:
if is_id:
new_values.append(id_value)
else:
new_values.append(ip_value)
new_part = f"{left}:{('/'.join(new_values))}"
new_parts.append(new_part)
else:
new_parts.append(part)
control_weight_lambda = ','.join(new_parts)
print(f"Control weight lambda: {control_weight_lambda}")
src_inputs = []
use_words = []
cur_run_time = time.strftime("%m%d-%H%M%S")
tmp_dir_root = f"tmp/gradio_demo"
temp_dir = f"{tmp_dir_root}/{cur_run_time}_{generate_random_string(4)}"
os.makedirs(temp_dir, exist_ok=True)
print(f"Temporary directory created: {temp_dir}")
for i, (image_path, caption) in enumerate(zip(images, captions)):
if image_path:
if caption.startswith("a ") or caption.startswith("A "):
word = caption[2:]
else:
word = caption
if f"ENT{i+1}" in prompt:
prompt = prompt.replace(f"ENT{i+1}", caption)
image = resize_keep_aspect_ratio(Image.open(image_path), 768)
save_path = f"{temp_dir}/tmp_resized_input_{i}.png"
image.save(save_path)
input_image_path = save_path
src_inputs.append(
{
"image_path": input_image_path,
"caption": caption
}
)
use_words.append((i, word, word))
test_sample = dict(
input_images=[], position_delta=[0, -32],
prompt=prompt,
target_height=target_height,
target_width=target_width,
seed=seed,
cond_size=cond_size,
vae_skip_iter=vae_skip_iter,
lora_scale=latent_dblora_scale_str,
control_weight_lambda=control_weight_lambda,
latent_sblora_scale=latent_sblora_scale_str,
condition_sblora_scale=vae_lora_scale,
double_attention=double_attention,
single_attention=single_attention,
)
if len(src_inputs) > 0:
test_sample["modulation"] = [
dict(
type="adapter",
src_inputs=src_inputs,
use_words=use_words,
),
]
json_dump(test_sample, f"{temp_dir}/test_sample.json", 'utf-8')
assert single_attention == True
target_size = int(round((target_width * target_height) ** 0.5) // 16 * 16)
print(test_sample)
model.config["train"]["dataset"]["val_condition_size"] = cond_size
model.config["train"]["dataset"]["val_target_size"] = target_size
if control_weight_lambda == "no":
control_weight_lambda = None
if vae_skip_iter == "no":
vae_skip_iter = None
use_condition_sblora_control = True
use_latent_sblora_control = True
image = generate_from_test_sample(
test_sample, model.pipe, model.config,
num_images=num_images,
target_height=target_height,
target_width=target_width,
seed=seed,
store_attn_map=store_attn_map,
vae_skip_iter=vae_skip_iter, # 使用新的参数
control_weight_lambda=control_weight_lambda, # 传递新的参数
double_attention=double_attention, # 新增参数
single_attention=single_attention, # 新增参数
ip_scale=latent_dblora_scale_str,
use_latent_sblora_control=use_latent_sblora_control,
latent_sblora_scale=latent_sblora_scale_str,
use_condition_sblora_control=use_condition_sblora_control,
condition_sblora_scale=vae_lora_scale,
)
if isinstance(image, list):
num_cols = 2
num_rows = int(math.ceil(num_images / num_cols))
image = image_grid(image, num_rows, num_cols)
save_path = f"{temp_dir}/tmp_result.png"
image.save(save_path)
return image
def create_image_input(index):
with gr.Column():
image = gr.Image(type="filepath", label=f"Image {index + 1}")
caption = gr.Textbox(label=f"Caption {index + 1}", value="")
id_ip_checkbox = gr.Checkbox(value=False, label=f"ID or not {index + 1}", visible=True)
with gr.Row():
vlm_btn = gr.Button("Auto Caption")
det_btn = gr.Button("Det & Seg")
face_btn = gr.Button("Crop Face")
return image, caption, face_btn, det_btn, vlm_btn, id_ip_checkbox
def merge_instances(orig_img, indices, ins_bboxes, ins_images):
orig_image_width, orig_image_height = orig_img.width, orig_img.height
final_img = Image.new("RGB", (orig_image_width, orig_image_height), color=(255, 255, 255))
bboxes = []
for i in indices:
bbox = np.array(ins_bboxes[i], dtype=int).tolist()
bboxes.append(bbox)
img = cv2pil(ins_images[i])
mask = (np.array(img)[..., :3] != 255).any(axis=-1)
mask = Image.fromarray(mask.astype(np.uint8) * 255, mode='L')
final_img.paste(img, (bbox[0], bbox[1]), mask)
bbox = merge_bboxes(bboxes)
img = final_img.crop(bbox)
return img, bbox
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.Markdown("""
## XVerse Demo
- **Paper**: [XVerse: A Versatile Image Generation Framework for Subject Consistency](https://arxiv.org/abs/2506.21416)
- **GitHub**: [ByteDance/XVerse](https://github.com/bytedance/XVerse)
- **Project Page**: [ByteDance/XVerse](https://bytedance.github.io/XVerse/)
#### Input Images and Prompts
* **Prompt**: The textual description guiding the image generation.
* **Upload Image**: Click "Image X" to upload your desired reference image.
* **Image Description**: Enter a description in the "Caption X" input box. You can also click "Auto Caption" to generate a description automatically.
* **Detection & Segmentation**: Click "Det & Seg" to perform detection and segmentation on the uploaded image.
* **Crop Face**: Use "Crop Face" to automatically crop the face from the image.
* **ID Checkbox**: Check or uncheck "ID or not" to determine whether to use ID-related weights for that specific input image.
> **⚠️ Important Usage Notes:**
>
> The main text prompt **MUST** include the exact text you entered in the `Image Description` field for each active image. **Generation will fail if this description is missing from the prompt.**
> * *Example*: If you upload two images and set their descriptions as "a man with red hair" (for Image 1) and "a woman with blue eyes" (for Image 2), your main prompt might be: "A `a man with red hair` walking beside `a woman with blue eyes` in a park."
> * You can then write your main prompt simply as: "`ENT1` walking beside `ENT2` in a park." The code will **automatically replace** these placeholders with the full description text before generation.
""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="")
clear_btn = gr.Button("清空输入图像")
with gr.Row():
for i in range(num_inputs):
image, caption, face_btn, det_btn, vlm_btn, id_ip_checkbox = create_image_input(i)
images.append(image)
idip_checkboxes.append(id_ip_checkbox)
captions.append(caption)
face_btns.append(face_btn)
det_btns.append(det_btn)
vlm_btns.append(vlm_btn)
with gr.Column():
output = gr.Image(label="Generated Image")
seed = gr.Number(value=42, label="Seed", info="")
gen_btn = gr.Button("Generate Image")
with gr.Row():
# 将其他设置参数压缩到 Advanced Accordion 内
with gr.Accordion("Advanced Settings", open=False):
gr.Markdown("""The Gradio demo provides several parameters to control your image generation process:
* **Generated Height/Width**: Use the sliders to set the shape of the output image.
* **Weight_id/ip**: Adjust these weight parameters. Higher values generally lead to better subject consistency but might slightly impact the naturalness of the generated image.
* **latent_lora_scale and vae_lora_scale**: Control the LoRA scale. Similar to Weight_id/ip, larger LoRA values can improve subject consistency but may reduce image naturalness.
* **vae_skip_iter_before and vae_skip_iter_after**: Configure VAE skip iterations. Skipping more steps can result in better naturalness but might compromise subject consistency.
""")
# 使用 Row 和 Column 来布局四个图像和描述
with gr.Row():
target_height = gr.Slider(512, 1024, step=128, value=768, label="Generated Height", info="")
target_width = gr.Slider(512, 1024, step=128, value=768, label="Generated Width", info="")
cond_size = gr.Slider(256, 384, step=128, value=256, label="Condition Size", info="")
with gr.Row():
# 修改 weight_id_ip_str 为两个 Slider
weight_id = gr.Slider(0.1, 5, step=0.1, value=3, label="weight_id")
weight_ip = gr.Slider(0.1, 5, step=0.1, value=5, label="weight_ip")
with gr.Row():
# 修改 ip_scale_str 为 Slider,并添加 Textbox 显示转换后的格式
ip_scale_str = gr.Slider(0.5, 1.5, step=0.01, value=0.85, label="latent_lora_scale")
vae_lora_scale = gr.Slider(0.5, 1.5, step=0.01, value=1.3, label="vae_lora_scale")
with gr.Row():
# 修改 vae_skip_iter 为两个 Slider
vae_skip_iter_s1 = gr.Slider(0, 1, step=0.01, value=0.05, label="vae_skip_iter_before")
vae_skip_iter_s2 = gr.Slider(0, 1, step=0.01, value=0.8, label="vae_skip_iter_after")
with gr.Row():
weight_id_ip_str = gr.Textbox(
value="0-1:1/3/5",
label="weight_id_ip_str",
interactive=False, visible=False
)
weight_id.change(
lambda s1, s2: f"0-1:1/{s1}/{s2}",
inputs=[weight_id, weight_ip],
outputs=weight_id_ip_str
)
weight_ip.change(
lambda s1, s2: f"0-1:1/{s1}/{s2}",
inputs=[weight_id, weight_ip],
outputs=weight_id_ip_str
)
vae_skip_iter = gr.Textbox(
value="0-0.05:1,0.8-1:1",
label="vae_skip_iter",
interactive=False, visible=False
)
vae_skip_iter_s1.change(
lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
outputs=vae_skip_iter
)
vae_skip_iter_s2.change(
lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
outputs=vae_skip_iter
)
with gr.Row():
db_latent_lora_scale_str = gr.Textbox(
value="0-1:0.85",
label="db_latent_lora_scale_str",
interactive=False, visible=False
)
sb_latent_lora_scale_str = gr.Textbox(
value="0-1:0.85",
label="sb_latent_lora_scale_str",
interactive=False, visible=False
)
vae_lora_scale_str = gr.Textbox(
value="0-1:1.3",
label="vae_lora_scale_str",
interactive=False, visible=False
)
vae_lora_scale.change(
lambda s: f"0-1:{s}",
inputs=vae_lora_scale,
outputs=vae_lora_scale_str
)
ip_scale_str.change(
lambda s: [f"0-1:{s}", f"0-1:{s}"],
inputs=ip_scale_str,
outputs=[db_latent_lora_scale_str, sb_latent_lora_scale_str]
)
with gr.Row():
double_attention = gr.Checkbox(value=False, label="Double Attention", visible=False)
single_attention = gr.Checkbox(value=True, label="Single Attention", visible=False)
gr.Markdown("### Examples")
gen_btn.click(
generate_image,
inputs=[
prompt, cond_size, target_height, target_width, seed,
vae_skip_iter, weight_id_ip_str,
double_attention, single_attention,
db_latent_lora_scale_str, sb_latent_lora_scale_str, vae_lora_scale_str,
*images,
*captions,
*idip_checkboxes,
],
outputs=output
)
# 修改清空函数的输出参数
clear_btn.click(clear_images, outputs=images)
# 循环绑定 Det & Seg 和 Auto Caption 按钮的点击事件
for i in range(num_inputs):
face_btns[i].click(crop_face_img, inputs=[images[i]], outputs=[images[i]])
det_btns[i].click(det_seg_img, inputs=[images[i], captions[i]], outputs=[images[i]])
vlm_btns[i].click(vlm_img_caption, inputs=[images[i]], outputs=[captions[i]])
examples = gr.Examples(
examples=[
[
"sample/hamster.jpg", None, None,
"a hamster", None, None,
False, False, False,
"ENT1 wearing a tiny hat",
42, 256, 768, 768,
3, 5,
0.85, 1.3,
0.05, 0.8,
],
[
"sample/woman.jpg", None, None,
"a woman", None, None,
True, False, False,
"ENT1 in a red dress is smiling",
42, 256, 768, 768,
3, 5,
0.85, 1.3,
0.05, 0.8,
],
[
"sample/woman.jpg", "sample/girl.jpg", None,
"a woman", "a girl", None,
True, True, False,
"ENT1 and ENT2 standing together in a park.",
42, 256, 768, 768,
2, 5,
0.85, 1.3,
0.05, 0.8,
],
[
"sample/woman.jpg", "sample/girl.jpg", "sample/old_man.jpg",
"a woman", "a girl", "an old man",
True, True, True,
"ENT1, ENT2, and ENT3 standing together in a park.",
42, 256, 768, 768,
2.5, 5,
0.8, 1.2,
0.05, 0.8,
],
],
inputs=[
images[0], images[1], images[2],
captions[0], captions[1], captions[2],
idip_checkboxes[0], idip_checkboxes[1], idip_checkboxes[2],
prompt, seed,
cond_size,
target_height,
target_width,
weight_id,
weight_ip,
ip_scale_str,
vae_lora_scale,
vae_skip_iter_s1,
vae_skip_iter_s2,
],
outputs=[images[3], captions[3], idip_checkboxes[3]],
fn=open_accordion_on_example_selection,
run_on_click=True,
cache_examples=False,
label="Examples"
)
demo.queue()
demo.launch()