Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,120 +1,101 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import
|
4 |
-
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
5 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
6 |
-
from diffusers.image_processor import VaeImageProcessor
|
7 |
-
from transformers import CLIPImageProcessor
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
from safetensors.torch import load_file
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
dtype = torch.float16
|
13 |
|
|
|
14 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
15 |
repo = "ByteDance/SDXL-Lightning"
|
16 |
-
|
17 |
-
"1
|
18 |
-
"2
|
19 |
-
"4
|
20 |
-
"8
|
21 |
}
|
22 |
|
23 |
-
# Inference function.
|
24 |
-
@spaces.GPU()
|
25 |
-
def generate(prompt, option, progress=gr.Progress()):
|
26 |
-
print(prompt, option)
|
27 |
-
ckpt, step = opts[option]
|
28 |
-
|
29 |
-
progress(0, desc="Initializing the model")
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(base,
|
34 |
-
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
|
35 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if step == 1 else "epsilon")
|
36 |
|
37 |
-
|
38 |
-
safety_checker
|
39 |
-
|
40 |
-
image_processor = VaeImageProcessor(vae_scale_factor=8)
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
progress((0, step))
|
48 |
-
results = pipe(prompt, num_inference_steps=step, guidance_scale=0, callback_on_step_end=inference_callback, output_type="pt")
|
49 |
-
|
50 |
-
# Safety check.
|
51 |
-
feature_extractor_input = image_processor.postprocess(results.images, output_type="pil")
|
52 |
-
safety_checker_input = feature_extractor(feature_extractor_input, return_tensors="pt")
|
53 |
-
pixel_values = safety_checker_input.pixel_values.to(device, dtype)
|
54 |
-
images, has_nsfw_concept = safety_checker(
|
55 |
-
images=results.images, clip_input=pixel_values
|
56 |
)
|
57 |
-
if has_nsfw_concept[0]:
|
58 |
-
print(f"Safety checker triggered on prompt: {prompt}")
|
59 |
-
return images[0]
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
with gr.Row():
|
69 |
-
prompt = gr.Textbox(
|
70 |
-
label="Text prompt",
|
71 |
-
scale=8
|
72 |
-
)
|
73 |
-
option = gr.Dropdown(
|
74 |
-
label="Inference steps",
|
75 |
-
choices=["1 Step", "2 Steps", "4 Steps", "8 Steps"],
|
76 |
-
value="4 Steps",
|
77 |
-
interactive=True
|
78 |
-
)
|
79 |
-
submit = gr.Button(
|
80 |
-
scale=1,
|
81 |
-
variant="primary"
|
82 |
)
|
83 |
-
|
84 |
-
img = gr.Image(label="SDXL-Lightning Generated Image")
|
85 |
|
86 |
-
|
87 |
-
fn=generate,
|
88 |
-
inputs=[prompt, option],
|
89 |
-
outputs=img,
|
90 |
-
)
|
91 |
-
submit.click(
|
92 |
-
fn=generate,
|
93 |
-
inputs=[prompt, option],
|
94 |
-
outputs=img,
|
95 |
-
)
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
["An owl perches quietly on a twisted branch deep within an ancient forest.", "1 Step"],
|
101 |
-
["A lion in the galaxy, octane render", "2 Steps"],
|
102 |
-
["A dolphin leaps through the waves, set against a backdrop of bright blues and teal hues.", "2 Steps"],
|
103 |
-
["A girl smiling", "4 Steps"],
|
104 |
-
["An astronaut riding a horse", "4 Steps"],
|
105 |
-
["A fish on a bicycle, colorful art", "4 Steps"],
|
106 |
-
["A close-up of an Asian lady with sunglasses.", "4 Steps"],
|
107 |
-
["Rabbit portrait in a forest, fantasy", "4 Steps"],
|
108 |
-
["A panda swimming", "4 Steps"],
|
109 |
-
["Man portrait, ethereal", "8 Steps"],
|
110 |
-
],
|
111 |
-
inputs=[prompt, option],
|
112 |
-
outputs=img,
|
113 |
-
cache_examples=False,
|
114 |
-
)
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
|
|
|
|
|
|
|
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
from safetensors.torch import load_file
|
6 |
+
import spaces
|
7 |
+
import os
|
8 |
+
from PIL import Image
|
9 |
|
10 |
+
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1"
|
|
|
11 |
|
12 |
+
# Constants
|
13 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
14 |
repo = "ByteDance/SDXL-Lightning"
|
15 |
+
checkpoints = {
|
16 |
+
"1-Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1],
|
17 |
+
"2-Step" : ["sdxl_lightning_2step_unet.safetensors", 2],
|
18 |
+
"4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4],
|
19 |
+
"8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8],
|
20 |
}
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
24 |
+
if torch.cuda.is_available():
|
25 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
|
|
|
|
26 |
|
27 |
+
if SAFETY_CHECKER:
|
28 |
+
from safety_checker import StableDiffusionSafetyChecker
|
29 |
+
from transformers import CLIPFeatureExtractor
|
|
|
30 |
|
31 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
32 |
+
"CompVis/stable-diffusion-safety-checker"
|
33 |
+
).to("cuda")
|
34 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
35 |
+
"openai/clip-vit-base-patch32"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
)
|
|
|
|
|
|
|
37 |
|
38 |
+
def check_nsfw_images(
|
39 |
+
images: list[Image.Image],
|
40 |
+
) -> tuple[list[Image.Image], list[bool]]:
|
41 |
+
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
|
42 |
+
has_nsfw_concepts = safety_checker(
|
43 |
+
images=[images],
|
44 |
+
clip_input=safety_checker_input.pixel_values.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
)
|
|
|
|
|
46 |
|
47 |
+
return images, has_nsfw_concepts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Function
|
50 |
+
@spaces.GPU(enable_queue=True)
|
51 |
+
def generate_image(prompt, ckpt):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
checkpoint = checkpoints[ckpt][0]
|
54 |
+
num_inference_steps = checkpoints[ckpt][1]
|
55 |
+
|
56 |
+
if num_inference_steps==1:
|
57 |
+
# Ensure sampler uses "trailing" timesteps and "sample" prediction type for 1-step inference.
|
58 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
59 |
+
else:
|
60 |
+
# Ensure sampler uses "trailing" timesteps.
|
61 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
62 |
+
|
63 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
|
64 |
+
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
65 |
+
|
66 |
+
if SAFETY_CHECKER:
|
67 |
+
images, has_nsfw_concepts = check_nsfw_images(results.images)
|
68 |
+
if any(has_nsfw_concepts):
|
69 |
+
gr.Warning("NSFW content detected.")
|
70 |
+
return Image.new("RGB", (512, 512))
|
71 |
+
return images[0]
|
72 |
+
return results.images[0]
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
# Gradio Interface
|
77 |
+
description = """
|
78 |
+
This demo utilizes the SDXL-Lightning model by ByteDance, which is a lightning-fast text-to-image generative model capable of producing high-quality images in 4 steps.
|
79 |
+
As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning
|
80 |
+
"""
|
81 |
+
|
82 |
+
with gr.Blocks(css="style.css") as demo:
|
83 |
+
gr.HTML("<h1><center>Text-to-Image with SDXL-Lightning ⚡</center></h1>")
|
84 |
+
gr.Markdown(description)
|
85 |
+
with gr.Group():
|
86 |
+
with gr.Row():
|
87 |
+
prompt = gr.Textbox(label='Enter you image prompt:', scale=8)
|
88 |
+
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
|
89 |
+
submit = gr.Button(scale=1, variant='primary')
|
90 |
+
img = gr.Image(label='SDXL-Lightning Generated Image')
|
91 |
+
|
92 |
+
prompt.submit(fn=generate_image,
|
93 |
+
inputs=[prompt, ckpt],
|
94 |
+
outputs=img,
|
95 |
+
)
|
96 |
+
submit.click(fn=generate_image,
|
97 |
+
inputs=[prompt, ckpt],
|
98 |
+
outputs=img,
|
99 |
+
)
|
100 |
|
101 |
demo.queue().launch()
|