SDXL-Lightning / app.py
PeterL1n's picture
Update app.py
795174e verified
raw
history blame
4.56 kB
import gradio as gr
import torch
import spaces
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers.image_processor import VaeImageProcessor
from transformers import CLIPImageProcessor
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
device = "cuda"
dtype = torch.float16
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
opts = {
"1 Step" : ("sdxl_lightning_1step_unet_x0.safetensors", 1),
"2 Steps" : ("sdxl_lightning_2step_unet.safetensors", 2),
"4 Steps" : ("sdxl_lightning_4step_unet.safetensors", 4),
"8 Steps" : ("sdxl_lightning_8step_unet.safetensors", 8),
}
# Inference function.
@spaces.GPU()
def generate(prompt, option, progress=gr.Progress()):
print(prompt, option)
ckpt, step = opts[option]
progress(0, desc="Initializing the model")
# Main pipeline.
unet = UNet2DConditionModel.from_config(base, subfolder="unet")
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=dtype, variant="fp16").to(device, dtype)
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if step == 1 else "epsilon")
# Safety checker.
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to(device, dtype)
feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
image_processor = VaeImageProcessor(vae_scale_factor=8)
def inference_callback(p, i, t, kwargs):
progress((i+1, step))
return kwargs
# Inference loop.
progress((0, step))
results = pipe(prompt, num_inference_steps=step, guidance_scale=0, callback_on_step_end=inference_callback, output_type="pt")
# Safety check.
feature_extractor_input = image_processor.postprocess(results.images, output_type="pil")
safety_checker_input = feature_extractor(feature_extractor_input, return_tensors="pt")
images, has_nsfw_concept = safety_checker(
images=results.images, clip_input=safety_checker_input.pixel_values.to(device, dtype)
)
if has_nsfw_concept[0]:
gr.Warning("Safety checker triggered. Image may contain violent or sexual content.")
print(f"Safety checker triggered on prompt: {prompt}")
return images[0]
with gr.Blocks(css="style.css") as demo:
gr.HTML(
"<h1><center>SDXL-Lightning</center></h1>" +
"<p><center>Lightning-fast text-to-image generation</center></p>" +
"<p><center><a href='https://huggingface.co/ByteDance/SDXL-Lightning'>https://huggingface.co/ByteDance/SDXL-Lightning</a></center></p>"
)
with gr.Row():
prompt = gr.Textbox(
label="Text prompt",
scale=8
)
option = gr.Dropdown(
label="Inference steps",
choices=["1 Step", "2 Steps", "4 Steps", "8 Steps"],
value="4 Steps",
interactive=True
)
submit = gr.Button(
scale=1,
variant="primary"
)
img = gr.Image(label="SDXL-Lightning Generated Image")
prompt.submit(
fn=generate,
inputs=[prompt, option],
outputs=img,
)
submit.click(
fn=generate,
inputs=[prompt, option],
outputs=img,
)
gr.Examples(
fn=generate,
examples=[
["An owl perches quietly on a twisted branch deep within an ancient forest.", "1 Step"],
["A lion in the galaxy, octane render", "2 Steps"],
["A dolphin leaps through the waves, set against a backdrop of bright blues and teal hues.", "2 Steps"],
["A girl smiling", "4 Steps"],
["An astronaut riding a horse", "4 Steps"],
["A fish on a bicycle, colorful art", "4 Steps"],
["A close-up of an Asian lady with sunglasses.", "4 Steps"],
["Rabbit portrait in a forest, fantasy", "4 Steps"],
["A panda swimming", "4 Steps"],
["Man portrait, ethereal", "8 Steps"],
],
inputs=[prompt, option],
outputs=img,
cache_examples=False,
)
gr.HTML(
"<p><small><center>This demo is built together by the community</center></small></p>"
)
demo.queue().launch()