Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
import re | |
import cv2 | |
import numpy as np | |
import torch | |
from torchvision.utils import make_grid | |
# from basicsr | |
def img2tensor(imgs, bgr2rgb=True, float32=True): | |
"""Numpy array to tensor. | |
Args: | |
imgs (list[ndarray] | ndarray): Input images. | |
bgr2rgb (bool): Whether to change bgr to rgb. | |
float32 (bool): Whether to change to float32. | |
Returns: | |
list[tensor] | tensor: Tensor images. If returned results only have | |
one element, just return tensor. | |
""" | |
def _totensor(img, bgr2rgb, float32): | |
if img.shape[2] == 3 and bgr2rgb: | |
if img.dtype == 'float64': | |
img = img.astype('float32') | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = torch.from_numpy(img.transpose(2, 0, 1)) | |
if float32: | |
img = img.float() | |
return img | |
if isinstance(imgs, list): | |
return [_totensor(img, bgr2rgb, float32) for img in imgs] | |
return _totensor(imgs, bgr2rgb, float32) | |
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): | |
"""Convert torch Tensors into image numpy arrays. | |
After clamping to [min, max], values will be normalized to [0, 1]. | |
Args: | |
tensor (Tensor or list[Tensor]): Accept shapes: | |
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); | |
2) 3D Tensor of shape (3/1 x H x W); | |
3) 2D Tensor of shape (H x W). | |
Tensor channel should be in RGB order. | |
rgb2bgr (bool): Whether to change rgb to bgr. | |
out_type (numpy type): output types. If ``np.uint8``, transform outputs | |
to uint8 type with range [0, 255]; otherwise, float type with | |
range [0, 1]. Default: ``np.uint8``. | |
min_max (tuple[int]): min and max values for clamp. | |
Returns: | |
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of | |
shape (H x W). The channel order is BGR. | |
""" | |
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): | |
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') | |
if torch.is_tensor(tensor): | |
tensor = [tensor] | |
result = [] | |
for _tensor in tensor: | |
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) | |
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) | |
n_dim = _tensor.dim() | |
if n_dim == 4: | |
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() | |
img_np = img_np.transpose(1, 2, 0) | |
if rgb2bgr: | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) | |
elif n_dim == 3: | |
img_np = _tensor.numpy() | |
img_np = img_np.transpose(1, 2, 0) | |
if img_np.shape[2] == 1: # gray image | |
img_np = np.squeeze(img_np, axis=2) | |
else: | |
if rgb2bgr: | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) | |
elif n_dim == 2: | |
img_np = _tensor.numpy() | |
else: | |
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}') | |
if out_type == np.uint8: | |
# Unlike MATLAB, numpy.unit8() WILL NOT round by default. | |
img_np = (img_np * 255.0).round() | |
img_np = img_np.astype(out_type) | |
result.append(img_np) | |
if len(result) == 1: | |
result = result[0] | |
return result | |
def resize_numpy_image_area(image, area=512 * 512): | |
h, w = image.shape[:2] | |
k = math.sqrt(area / (h * w)) | |
h = int(h * k) - (int(h * k) % 16) | |
w = int(w * k) - (int(w * k) % 16) | |
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA) | |
return image | |
# reference: https://github.com/huggingface/diffusers/pull/9295/files | |
def convert_flux_lora_to_diffusers(old_state_dict): | |
new_state_dict = {} | |
orig_keys = list(old_state_dict.keys()) | |
def handle_qkv(sds_sd, ait_sd, sds_key, ait_keys, dims=None): | |
down_weight = sds_sd.pop(sds_key) | |
up_weight = sds_sd.pop(sds_key.replace(".down.weight", ".up.weight")) | |
# calculate dims if not provided | |
num_splits = len(ait_keys) | |
if dims is None: | |
dims = [up_weight.shape[0] // num_splits] * num_splits | |
else: | |
assert sum(dims) == up_weight.shape[0] | |
# make ai-toolkit weight | |
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys] | |
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys] | |
# down_weight is copied to each split | |
ait_sd.update({k: down_weight for k in ait_down_keys}) | |
# up_weight is split to each split | |
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) # noqa: C416 | |
for old_key in orig_keys: | |
# Handle double_blocks | |
if 'double_blocks' in old_key: | |
block_num = re.search(r"double_blocks_(\d+)", old_key).group(1) | |
new_key = f"transformer.transformer_blocks.{block_num}" | |
if "proj_lora1" in old_key: | |
new_key += ".attn.to_out.0" | |
elif "proj_lora2" in old_key: | |
new_key += ".attn.to_add_out" | |
elif "qkv_lora2" in old_key and "up" not in old_key: | |
handle_qkv( | |
old_state_dict, | |
new_state_dict, | |
old_key, | |
[ | |
f"transformer.transformer_blocks.{block_num}.attn.add_q_proj", | |
f"transformer.transformer_blocks.{block_num}.attn.add_k_proj", | |
f"transformer.transformer_blocks.{block_num}.attn.add_v_proj", | |
], | |
) | |
# continue | |
elif "qkv_lora1" in old_key and "up" not in old_key: | |
handle_qkv( | |
old_state_dict, | |
new_state_dict, | |
old_key, | |
[ | |
f"transformer.transformer_blocks.{block_num}.attn.to_q", | |
f"transformer.transformer_blocks.{block_num}.attn.to_k", | |
f"transformer.transformer_blocks.{block_num}.attn.to_v", | |
], | |
) | |
# continue | |
if "down" in old_key: | |
new_key += ".lora_A.weight" | |
elif "up" in old_key: | |
new_key += ".lora_B.weight" | |
# Handle single_blocks | |
elif 'single_blocks' in old_key: | |
block_num = re.search(r"single_blocks_(\d+)", old_key).group(1) | |
new_key = f"transformer.single_transformer_blocks.{block_num}" | |
if "proj_lora" in old_key: | |
new_key += ".proj_out" | |
elif "qkv_lora" in old_key and "up" not in old_key: | |
handle_qkv( | |
old_state_dict, | |
new_state_dict, | |
old_key, | |
[ | |
f"transformer.single_transformer_blocks.{block_num}.attn.to_q", | |
f"transformer.single_transformer_blocks.{block_num}.attn.to_k", | |
f"transformer.single_transformer_blocks.{block_num}.attn.to_v", | |
], | |
) | |
if "down" in old_key: | |
new_key += ".lora_A.weight" | |
elif "up" in old_key: | |
new_key += ".lora_B.weight" | |
else: | |
# Handle other potential key patterns here | |
new_key = old_key | |
# Since we already handle qkv above. | |
if "qkv" not in old_key and 'embedding' not in old_key: | |
new_state_dict[new_key] = old_state_dict.pop(old_key) | |
# if len(old_state_dict) > 0: | |
# raise ValueError(f"`old_state_dict` should be at this point but has: {list(old_state_dict.keys())}.") | |
return new_state_dict | |