Dolphin / app.py
xfey's picture
[fix] update markdown utilities
ab40c3e
import io
import os
import tempfile
import time
import uuid
import cv2
import gradio as gr
import pymupdf
import spaces
import torch
from gradio_pdf import PDF
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel
from utils.utils import prepare_image, parse_layout_string, process_coordinates, ImageDimensions
from utils.markdown_utils import MarkdownConverter
# 读取外部CSS文件
def load_css():
css_path = os.path.join(os.path.dirname(__file__), "static", "styles.css")
if os.path.exists(css_path):
with open(css_path, "r", encoding="utf-8") as f:
return f.read()
return ""
# 全局变量存储模型
model = None
processor = None
tokenizer = None
# 自动初始化模型
@spaces.GPU
def initialize_model():
"""初始化 Hugging Face 模型"""
global model, processor, tokenizer
if model is None:
logger.info("Loading DOLPHIN model...")
model_id = "ByteDance/Dolphin"
# 加载处理器和模型
processor = AutoProcessor.from_pretrained(model_id)
model = VisionEncoderDecoderModel.from_pretrained(model_id)
model.eval()
# 设置设备和精度
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
model = model.half() # 使用半精度
# 设置tokenizer
tokenizer = processor.tokenizer
logger.info(f"Model loaded successfully on {device}")
return "Model ready"
# 启动时自动初始化模型
logger.info("Initializing model at startup...")
try:
initialize_model()
logger.info("Model initialization completed")
except Exception as e:
logger.error(f"Model initialization failed: {e}")
# 模型将在首次使用时重新尝试初始化
# 模型推理函数
@spaces.GPU
def model_chat(prompt, image):
"""使用模型进行推理"""
global model, processor, tokenizer
# 确保模型已初始化
if model is None:
initialize_model()
# 检查是否为批处理
is_batch = isinstance(image, list)
if not is_batch:
images = [image]
prompts = [prompt]
else:
images = image
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
# 准备图像
device = "cuda" if torch.cuda.is_available() else "cpu"
batch_inputs = processor(images, return_tensors="pt", padding=True)
batch_pixel_values = batch_inputs.pixel_values.half().to(device)
# 准备提示
prompts = [f"<s>{p} <Answer/>" for p in prompts]
batch_prompt_inputs = tokenizer(
prompts,
add_special_tokens=False,
return_tensors="pt"
)
batch_prompt_ids = batch_prompt_inputs.input_ids.to(device)
batch_attention_mask = batch_prompt_inputs.attention_mask.to(device)
# 生成文本
outputs = model.generate(
pixel_values=batch_pixel_values,
decoder_input_ids=batch_prompt_ids,
decoder_attention_mask=batch_attention_mask,
min_length=1,
max_length=4096,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[tokenizer.unk_token_id]],
return_dict_in_generate=True,
do_sample=False,
num_beams=1,
repetition_penalty=1.1
)
# 处理输出
sequences = tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
# 清理提示文本
results = []
for i, sequence in enumerate(sequences):
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
results.append(cleaned)
# 返回单个结果或批处理结果
if not is_batch:
return results[0]
return results
# 处理元素批次
@spaces.GPU
def process_element_batch(elements, prompt, max_batch_size=16):
"""处理同类型元素的批次"""
results = []
# 确定批次大小
batch_size = min(len(elements), max_batch_size)
# 分批处理
for i in range(0, len(elements), batch_size):
batch_elements = elements[i:i+batch_size]
crops_list = [elem["crop"] for elem in batch_elements]
# 使用相同的提示
prompts_list = [prompt] * len(crops_list)
# 批量推理
batch_results = model_chat(prompts_list, crops_list)
# 添加结果
for j, result in enumerate(batch_results):
elem = batch_elements[j]
results.append({
"label": elem["label"],
"bbox": elem["bbox"],
"text": result.strip(),
"reading_order": elem["reading_order"],
})
return results
# 清理临时文件
def cleanup_temp_file(file_path):
"""安全地删除临时文件"""
try:
if file_path and os.path.exists(file_path):
os.unlink(file_path)
except Exception as e:
logger.warning(f"Failed to cleanup temp file {file_path}: {e}")
def convert_to_image(file_path, target_size=896, page_num=0):
"""将输入文件转换为图像格式,长边调整到指定尺寸"""
if file_path is None:
return None
try:
# 检查文件扩展名
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext == '.pdf':
# PDF文件:转换指定页面为图像
logger.info(f"Converting PDF page {page_num} to image: {file_path}")
doc = pymupdf.open(file_path)
# 检查页面数量
if page_num >= len(doc):
page_num = 0 # 如果页面超出范围,使用第一页
page = doc[page_num]
# 计算缩放比例,使长边为target_size
rect = page.rect
scale = target_size / max(rect.width, rect.height)
# 渲染页面为图像
mat = pymupdf.Matrix(scale, scale)
pix = page.get_pixmap(matrix=mat)
# 转换为PIL图像
img_data = pix.tobytes("png")
pil_image = Image.open(io.BytesIO(img_data))
# 保存为临时文件
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file:
pil_image.save(tmp_file.name, "PNG")
doc.close()
return tmp_file.name
else:
# 图像文件:调整尺寸(忽略page_num参数)
logger.info(f"Resizing image: {file_path}")
pil_image = Image.open(file_path).convert("RGB")
# 计算新尺寸,保持长宽比
w, h = pil_image.size
if max(w, h) > target_size:
if w > h:
new_w, new_h = target_size, int(h * target_size / w)
else:
new_w, new_h = int(w * target_size / h), target_size
pil_image = pil_image.resize((new_w, new_h), Image.Resampling.LANCZOS)
# 如果已是图像且尺寸合适,直接返回原文件
if max(w, h) <= target_size:
return file_path
# 保存调整后的图像
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file:
pil_image.save(tmp_file.name, "PNG")
return tmp_file.name
except Exception as e:
logger.error(f"Error converting file to image: {e}")
return file_path # 如果转换失败,返回原文件
def get_pdf_page_count(file_path):
"""获取PDF文件的页数"""
try:
if file_path and file_path.lower().endswith('.pdf'):
doc = pymupdf.open(file_path)
page_count = len(doc)
doc.close()
return page_count
else:
return 1 # 非PDF文件视为单页
except Exception as e:
logger.error(f"Error getting PDF page count: {e}")
return 1
def convert_all_pdf_pages_to_images(file_path, target_size=896):
"""将PDF的所有页面转换为图像列表"""
if file_path is None:
return []
try:
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext == '.pdf':
doc = pymupdf.open(file_path)
image_paths = []
for page_num in range(len(doc)):
page = doc[page_num]
# 计算缩放比例
rect = page.rect
scale = target_size / max(rect.width, rect.height)
# 渲染页面为图像
mat = pymupdf.Matrix(scale, scale)
pix = page.get_pixmap(matrix=mat)
# 转换为PIL图像
img_data = pix.tobytes("png")
pil_image = Image.open(io.BytesIO(img_data))
# 保存为临时文件
with tempfile.NamedTemporaryFile(suffix=f"_page_{page_num}.png", delete=False) as tmp_file:
pil_image.save(tmp_file.name, "PNG")
image_paths.append(tmp_file.name)
doc.close()
return image_paths
else:
# 非PDF文件,返回调整后的单个图像
converted_path = convert_to_image(file_path, target_size)
return [converted_path] if converted_path else []
except Exception as e:
logger.error(f"Error converting PDF pages to images: {e}")
return []
def to_pdf(file_path):
"""为了兼容性保留的函数,现在调用convert_to_image"""
return convert_to_image(file_path)
@spaces.GPU(duration=120)
def process_document(file_path):
"""处理文档的主要函数 - 支持多页PDF处理"""
if file_path is None:
return "", "", []
start_time = time.time()
original_file_path = file_path
# 确保模型已初始化
if model is None:
initialize_model()
try:
# 获取页数
page_count = get_pdf_page_count(file_path)
logger.info(f"Document has {page_count} page(s)")
# 将所有页面转换为图像
image_paths = convert_all_pdf_pages_to_images(file_path)
if not image_paths:
raise Exception("Failed to convert document to images")
# 记录需要清理的临时文件
temp_files_created = []
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext == '.pdf':
temp_files_created.extend(image_paths)
elif len(image_paths) == 1 and image_paths[0] != original_file_path:
temp_files_created.append(image_paths[0])
all_results = []
md_contents = []
# 逐页处理
for page_idx, image_path in enumerate(image_paths):
logger.info(f"Processing page {page_idx + 1}/{len(image_paths)}")
# 处理当前页面
recognition_results = process_page(image_path)
# 生成当前页的markdown内容
page_md_content = generate_markdown(recognition_results)
md_contents.append(page_md_content)
# 保存当前页的处理数据
page_data = {
"page": page_idx + 1,
"elements": recognition_results,
"total_elements": len(recognition_results)
}
all_results.append(page_data)
# 计算处理时间
processing_time = time.time() - start_time
# 合并所有页面的markdown内容
if len(md_contents) > 1:
final_md_content = "\n\n---\n\n".join(md_contents)
else:
final_md_content = md_contents[0] if md_contents else ""
# 在结果数组最后添加总体信息
summary_data = {
"summary": True,
"total_pages": len(image_paths),
"total_elements": sum(len(page["elements"]) for page in all_results),
"processing_time": f"{processing_time:.2f}s",
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
}
all_results.append(summary_data)
logger.info(f"Document processed successfully in {processing_time:.2f}s - {len(image_paths)} page(s)")
return final_md_content, final_md_content, all_results
except Exception as e:
logger.error(f"Error processing document: {str(e)}")
error_data = [{
"error": True,
"message": str(e),
"original_file": original_file_path,
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
}]
return f"# 处理错误\n\n处理文档时发生错误: {str(e)}", "", error_data
finally:
# 清理临时文件
if 'temp_files_created' in locals():
for temp_file in temp_files_created:
if temp_file and os.path.exists(temp_file):
cleanup_temp_file(temp_file)
def process_page(image_path):
"""处理单页文档"""
# 阶段1: 页面级布局解析
pil_image = Image.open(image_path).convert("RGB")
layout_output = model_chat("Parse the reading order of this document.", pil_image)
# 阶段2: 元素级内容解析
padded_image, dims = prepare_image(pil_image)
recognition_results = process_elements(layout_output, padded_image, dims)
return recognition_results
def process_elements(layout_results, padded_image, dims, max_batch_size=16):
"""解析所有文档元素"""
layout_results = parse_layout_string(layout_results)
# 分别存储不同类型的元素
text_elements = [] # 文本元素
table_elements = [] # 表格元素
figure_results = [] # 图像元素(无需处理)
previous_box = None
reading_order = 0
# 收集要处理的元素并按类型分组
for bbox, label in layout_results:
try:
# 调整坐标
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
bbox, padded_image, dims, previous_box
)
# 裁剪并解析元素
cropped = padded_image[y1:y2, x1:x2]
if cropped.size > 0:
if label == "fig":
# 对于图像区域,提取图像的base64编码
try:
# 将裁剪的图像转换为PIL图像
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
# 转换为base64
import io
import base64
buffered = io.BytesIO()
pil_crop.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
figure_results.append(
{
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"text": img_base64, # 存储base64编码而不是空字符串
"reading_order": reading_order,
}
)
except Exception as e:
logger.error(f"Error encoding figure to base64: {e}")
figure_results.append(
{
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"text": "", # 如果编码失败,使用空字符串
"reading_order": reading_order,
}
)
else:
# 准备元素进行解析
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
element_info = {
"crop": pil_crop,
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"reading_order": reading_order,
}
# 按类型分组
if label == "tab":
table_elements.append(element_info)
else: # 文本元素
text_elements.append(element_info)
reading_order += 1
except Exception as e:
logger.error(f"Error processing bbox with label {label}: {str(e)}")
continue
# 初始化结果列表
recognition_results = figure_results.copy()
# 处理文本元素(批量)
if text_elements:
text_results = process_element_batch(text_elements, "Read text in the image.", max_batch_size)
recognition_results.extend(text_results)
# 处理表格元素(批量)
if table_elements:
table_results = process_element_batch(table_elements, "Parse the table in the image.", max_batch_size)
recognition_results.extend(table_results)
# 按阅读顺序排序
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
return recognition_results
def generate_markdown(recognition_results):
"""从识别结果生成Markdown内容"""
# 使用MarkdownConverter来处理所有类型的内容,包括图片
converter = MarkdownConverter()
return converter.convert(recognition_results)
# LaTeX 渲染配置
latex_delimiters = [
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False},
{"left": "\\[", "right": "\\]", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
]
# 加载自定义CSS
custom_css = load_css()
# 读取页面头部
with open("header.html", "r", encoding="utf-8") as file:
header = file.read()
# 创建 Gradio 界面
with gr.Blocks(css=custom_css, title="Dolphin Document Parser") as demo:
gr.HTML(header)
with gr.Row():
# 侧边栏 - 文件上传和控制
with gr.Column(scale=1, elem_classes="sidebar"):
# 文件上传组件
file = gr.File(
label="Choose PDF or image file",
file_types=[".pdf", ".png", ".jpeg", ".jpg"],
elem_id="file-upload"
)
with gr.Row(elem_classes="action-buttons"):
submit_btn = gr.Button("提交/Submit", variant="primary")
clear_btn = gr.ClearButton(value="清空/Clear")
# 示例文件
example_root = os.path.join(os.path.dirname(__file__), "examples")
if os.path.exists(example_root):
gr.HTML("示例文件/Example Files")
example_files = [
os.path.join(example_root, f)
for f in os.listdir(example_root)
if not f.endswith(".py")
]
examples = gr.Examples(
examples=example_files,
inputs=file,
examples_per_page=10,
elem_id="example-files"
)
# 主体内容区域
with gr.Column(scale=7):
with gr.Row(elem_classes="main-content"):
# 预览面板
with gr.Column(scale=1, elem_classes="preview-panel"):
gr.HTML("文件预览/Preview")
pdf_show = PDF(label="", interactive=False, visible=True, height=600)
# 输出面板
with gr.Column(scale=1, elem_classes="output-panel"):
with gr.Tabs():
with gr.Tab("Markdown [Render]"):
md_render = gr.Markdown(
label="",
height=700,
show_copy_button=True,
latex_delimiters=latex_delimiters,
line_breaks=True,
)
with gr.Tab("Markdown [Content]"):
md_content = gr.TextArea(lines=30, show_copy_button=True)
with gr.Tab("Json [Content]"):
json_output = gr.JSON(label="", height=700)
# 事件处理 - 预览文件
def preview_file(file_path):
"""预览上传的文件,对图像先调整尺寸再转换为PDF格式"""
if file_path is None:
return None
try:
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext == '.pdf':
# PDF文件直接返回
return file_path
else:
# 图像文件:先调整尺寸再转换为PDF
logger.info(f"Resizing image for preview: {file_path}")
# 使用PIL打开图像并调整尺寸
pil_image = Image.open(file_path).convert("RGB")
w, h = pil_image.size
# 如果图像很大,调整到合适预览尺寸(长边最大896像素)
max_preview_size = 896
if max(w, h) > max_preview_size:
if w > h:
new_w, new_h = max_preview_size, int(h * max_preview_size / w)
else:
new_w, new_h = int(w * max_preview_size / h), max_preview_size
pil_image = pil_image.resize((new_w, new_h), Image.Resampling.LANCZOS)
logger.info(f"Resized from {w}x{h} to {new_w}x{new_h} for preview")
# 将调整后的图像转换为PDF
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as tmp_file:
pil_image.save(tmp_file.name, "PDF")
return tmp_file.name
except Exception as e:
logger.error(f"Error creating preview: {e}")
# 出错时使用原来的方法
try:
with pymupdf.open(file_path) as f:
if f.is_pdf:
return file_path
else:
pdf_bytes = f.convert_to_pdf()
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as tmp_file:
tmp_file.write(pdf_bytes)
return tmp_file.name
except Exception as e2:
logger.error(f"Fallback preview method also failed: {e2}")
return None
file.change(fn=preview_file, inputs=file, outputs=pdf_show)
# 文档处理
def process_with_status(file_path):
"""处理文档并更新状态"""
if file_path is None:
return "", "", []
# 执行文档处理
md_render_result, md_content_result, json_result = process_document(file_path)
return md_render_result, md_content_result, json_result
submit_btn.click(
fn=process_with_status,
inputs=[file],
outputs=[md_render, md_content, json_output],
)
# 清空所有内容
def reset_all():
return None, None, "", "", []
clear_btn.click(
fn=reset_all,
inputs=[],
outputs=[file, pdf_show, md_render, md_content, json_output]
)
# 启动应用
if __name__ == "__main__":
demo.launch()