Spaces:
Running
on
Zero
Running
on
Zero
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
# // | |
# // Licensed under the Apache License, Version 2.0 (the "License"); | |
# // you may not use this file except in compliance with the License. | |
# // You may obtain a copy of the License at | |
# // | |
# // http://www.apache.org/licenses/LICENSE-2.0 | |
# // | |
# // Unless required by applicable law or agreed to in writing, software | |
# // distributed under the License is distributed on an "AS IS" BASIS, | |
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# // See the License for the specific language governing permissions and | |
# // limitations under the License. | |
""" | |
Sampler base class. | |
""" | |
from abc import ABC, abstractmethod | |
from dataclasses import dataclass | |
from typing import Callable | |
import torch | |
from tqdm import tqdm | |
from ..schedules.base import Schedule | |
from ..timesteps.base import SamplingTimesteps | |
from ..types import PredictionType, SamplingDirection | |
from ..utils import assert_schedule_timesteps_compatible | |
class SamplerModelArgs: | |
x_t: torch.Tensor | |
t: torch.Tensor | |
i: int | |
class Sampler(ABC): | |
""" | |
Samplers are ODE/SDE solvers. | |
""" | |
def __init__( | |
self, | |
schedule: Schedule, | |
timesteps: SamplingTimesteps, | |
prediction_type: PredictionType, | |
return_endpoint: bool = True, | |
): | |
assert_schedule_timesteps_compatible( | |
schedule=schedule, | |
timesteps=timesteps, | |
) | |
self.schedule = schedule | |
self.timesteps = timesteps | |
self.prediction_type = prediction_type | |
self.return_endpoint = return_endpoint | |
def sample( | |
self, | |
x: torch.Tensor, | |
f: Callable[[SamplerModelArgs], torch.Tensor], | |
) -> torch.Tensor: | |
""" | |
Generate a new sample given the the intial sample x and score function f. | |
""" | |
def get_next_timestep( | |
self, | |
t: torch.Tensor, | |
) -> torch.Tensor: | |
""" | |
Get the next sample timestep. | |
Support multiple different timesteps t in a batch. | |
If no more steps, return out of bound value -1 or T+1. | |
""" | |
T = self.timesteps.T | |
steps = len(self.timesteps) | |
curr_idx = self.timesteps.index(t) | |
next_idx = curr_idx + 1 | |
bound = -1 if self.timesteps.direction == SamplingDirection.backward else T + 1 | |
s = self.timesteps[next_idx.clamp_max(steps - 1)] | |
s = s.where(next_idx < steps, bound) | |
return s | |
def get_endpoint( | |
self, | |
pred: torch.Tensor, | |
x_t: torch.Tensor, | |
t: torch.Tensor, | |
) -> torch.Tensor: | |
""" | |
Get to the endpoint of the probability flow. | |
""" | |
x_0, x_T = self.schedule.convert_from_pred(pred, self.prediction_type, x_t, t) | |
return x_0 if self.timesteps.direction == SamplingDirection.backward else x_T | |
def get_progress_bar(self): | |
""" | |
Get progress bar for sampling. | |
""" | |
return tqdm( | |
iterable=range(len(self.timesteps) - (0 if self.return_endpoint else 1)), | |
dynamic_ncols=True, | |
desc=self.__class__.__name__, | |
) | |