Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import os | |
| from langchain_openai import ChatOpenAI | |
| from langchain_openai import OpenAIEmbeddings | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.chains.combine_documents import create_stuff_documents_chain | |
| from langchain_core.prompts import ChatPromptTemplate | |
| from langchain.chains import create_retrieval_chain | |
| from langchain_objectbox.vectorstores import ObjectBox | |
| from langchain_community.document_loaders import PyPDFDirectoryLoader | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| ## load the Groq And OpenAI Api Key | |
| os.environ['OPEN_API_KEY']=os.getenv("OPENAI_API_KEY") | |
| groq_api_key=os.getenv('GROQ_API_KEY') | |
| st.title("Objectbox VectorstoreDB With Llama3 Demo") | |
| llm = ChatOpenAI(model="gpt-4o") ## Calling Gpt-4o | |
| prompt=ChatPromptTemplate.from_template( | |
| """ | |
| Answer the questions based on the provided context only. | |
| Please provide the most accurate response based on the question | |
| <context> | |
| {context} | |
| <context> | |
| Questions:{input} | |
| """ | |
| ) | |
| ## Vector Enbedding and Objectbox Vectorstore db | |
| def vector_embedding(): | |
| if "vectors" not in st.session_state: | |
| st.session_state.embeddings=OpenAIEmbeddings() | |
| st.session_state.loader=PyPDFDirectoryLoader("./us_census") ## Data Ingestion | |
| st.session_state.docs=st.session_state.loader.load() ## Documents Loading | |
| st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=200) | |
| st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) | |
| st.session_state.vectors=ObjectBox.from_documents(st.session_state.final_documents,st.session_state.embeddings,embedding_dimensions=768) | |
| input_prompt=st.text_input("Enter Your Question From Documents") | |
| if st.button("Documents Embedding"): | |
| vector_embedding() | |
| st.write("ObjectBox Database is ready") | |
| import time | |
| if input_prompt: | |
| document_chain=create_stuff_documents_chain(llm,prompt) | |
| retriever=st.session_state.vectors.as_retriever() | |
| retrieval_chain=create_retrieval_chain(retriever,document_chain) | |
| start=time.process_time() | |
| response=retrieval_chain.invoke({'input':input_prompt}) | |
| print("Response time :",time.process_time()-start) | |
| st.write(response['answer']) | |
| # With a streamlit expander | |
| with st.expander("Document Similarity Search"): | |
| # Find the relevant chunks | |
| for i, doc in enumerate(response["context"]): | |
| st.write(doc.page_content) | |
| st.write("--------------------------------") | |