AK391
models
ff8c072
raw
history blame
1.23 kB
"""Modified from https://github.com/CSAILVision/semantic-segmentation-pytorch"""
import os
import sys
import numpy as np
import torch
try:
from urllib import urlretrieve
except ImportError:
from urllib.request import urlretrieve
def load_url(url, model_dir='./pretrained', map_location=None):
if not os.path.exists(model_dir):
os.makedirs(model_dir)
filename = url.split('/')[-1]
cached_file = os.path.join(model_dir, filename)
if not os.path.exists(cached_file):
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
urlretrieve(url, cached_file)
return torch.load(cached_file, map_location=map_location)
def color_encode(labelmap, colors, mode='RGB'):
labelmap = labelmap.astype('int')
labelmap_rgb = np.zeros((labelmap.shape[0], labelmap.shape[1], 3),
dtype=np.uint8)
for label in np.unique(labelmap):
if label < 0:
continue
labelmap_rgb += (labelmap == label)[:, :, np.newaxis] * \
np.tile(colors[label],
(labelmap.shape[0], labelmap.shape[1], 1))
if mode == 'BGR':
return labelmap_rgb[:, :, ::-1]
else:
return labelmap_rgb