Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +52 -3
- requirements.txt +5 -1
app.py
CHANGED
@@ -2,16 +2,21 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
from transformers import pipeline
|
5 |
-
|
|
|
6 |
import torch.nn.functional as F
|
7 |
import torch
|
8 |
import io
|
9 |
import base64
|
10 |
from stqdm import stqdm
|
|
|
11 |
|
|
|
|
|
12 |
import matplotlib.pyplot as plt
|
13 |
import numpy as np
|
14 |
|
|
|
15 |
|
16 |
# Define the model and tokenizer
|
17 |
model_name = 'nlptown/bert-base-multilingual-uncased-sentiment'
|
@@ -42,6 +47,19 @@ def get_table_download_link(df):
|
|
42 |
b64 = base64.b64encode(csv.encode()).decode()
|
43 |
return f'<a href="data:file/csv;base64,{b64}" download="data.csv">Download csv file</a>'
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Function for classifying with the new model
|
47 |
def classify_with_new_classes(reviews, class_names):
|
@@ -78,7 +96,11 @@ def main():
|
|
78 |
review_column = st.selectbox('Select the column from your excel file containing text', df.columns)
|
79 |
df[review_column] = df[review_column].astype(str)
|
80 |
|
|
|
|
|
|
|
81 |
class_names = st.text_input('Enter the possible class names separated by comma') # New input field for class names
|
|
|
82 |
except Exception as e:
|
83 |
st.write("An error occurred while reading the uploaded file. Please make sure it's a valid Excel file.")
|
84 |
return
|
@@ -109,6 +131,8 @@ def main():
|
|
109 |
|
110 |
|
111 |
|
|
|
|
|
112 |
def process_reviews(df, review_column, class_names):
|
113 |
with st.spinner('Classifying reviews...'):
|
114 |
progress_bar = st.progress(0)
|
@@ -134,7 +158,9 @@ def process_reviews(df, review_column, class_names):
|
|
134 |
class_scores_dict[name] = [score[i] for score in class_scores]
|
135 |
|
136 |
# Add a new column with the class that has the highest score
|
137 |
-
|
|
|
|
|
138 |
|
139 |
df_new = df.copy()
|
140 |
df_new['raw_scores'] = raw_scores
|
@@ -192,14 +218,37 @@ def display_dataframe(df, df_display):
|
|
192 |
)
|
193 |
|
194 |
st.dataframe(df_display)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
def display_ratings(df, review_column):
|
197 |
cols = st.columns(5)
|
198 |
|
199 |
for i in range(1, 6):
|
200 |
-
|
|
|
|
|
|
|
201 |
cols[i-1].markdown(f"### {rating_counts}")
|
202 |
cols[i-1].markdown(f"{'⭐' * i}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
|
205 |
|
|
|
2 |
import pandas as pd
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
from transformers import pipeline
|
5 |
+
from fuzzywuzzy import fuzz
|
6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
import torch.nn.functional as F
|
8 |
import torch
|
9 |
import io
|
10 |
import base64
|
11 |
from stqdm import stqdm
|
12 |
+
import nltk
|
13 |
|
14 |
+
from nltk.corpus import stopwords
|
15 |
+
nltk.download('stopwords')
|
16 |
import matplotlib.pyplot as plt
|
17 |
import numpy as np
|
18 |
|
19 |
+
stopwords_list = stopwords.words('english') + ['your_additional_stopwords_here']
|
20 |
|
21 |
# Define the model and tokenizer
|
22 |
model_name = 'nlptown/bert-base-multilingual-uncased-sentiment'
|
|
|
47 |
b64 = base64.b64encode(csv.encode()).decode()
|
48 |
return f'<a href="data:file/csv;base64,{b64}" download="data.csv">Download csv file</a>'
|
49 |
|
50 |
+
def filter_dataframe(df, review_column, filter_words):
|
51 |
+
# Return full DataFrame if filter_words is empty or contains only spaces
|
52 |
+
if not filter_words or all(word.isspace() for word in filter_words):
|
53 |
+
return df
|
54 |
+
filter_scores = df[review_column].apply(lambda x: max([fuzz.token_set_ratio(x, word) for word in filter_words]))
|
55 |
+
return df[filter_scores > 70] # Adjust this threshold as necessary
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
def process_filter_words(filter_words_input):
|
60 |
+
filter_words = [word.strip() for word in filter_words_input.split(',')]
|
61 |
+
return filter_words
|
62 |
+
|
63 |
|
64 |
# Function for classifying with the new model
|
65 |
def classify_with_new_classes(reviews, class_names):
|
|
|
96 |
review_column = st.selectbox('Select the column from your excel file containing text', df.columns)
|
97 |
df[review_column] = df[review_column].astype(str)
|
98 |
|
99 |
+
|
100 |
+
filter_words_input = st.text_input('Enter words to filter the data by, separated by comma (or leave empty)') # New input field for filter words
|
101 |
+
filter_words = [] if filter_words_input.strip() == "" else process_filter_words(filter_words_input) # Process the filter words
|
102 |
class_names = st.text_input('Enter the possible class names separated by comma') # New input field for class names
|
103 |
+
df = filter_dataframe(df, review_column, filter_words) # Filter the DataFrame
|
104 |
except Exception as e:
|
105 |
st.write("An error occurred while reading the uploaded file. Please make sure it's a valid Excel file.")
|
106 |
return
|
|
|
131 |
|
132 |
|
133 |
|
134 |
+
|
135 |
+
|
136 |
def process_reviews(df, review_column, class_names):
|
137 |
with st.spinner('Classifying reviews...'):
|
138 |
progress_bar = st.progress(0)
|
|
|
158 |
class_scores_dict[name] = [score[i] for score in class_scores]
|
159 |
|
160 |
# Add a new column with the class that has the highest score
|
161 |
+
if class_names and not all(name.isspace() for name in class_names):
|
162 |
+
df['Highest Class'] = df[class_names].idxmax(axis=1)
|
163 |
+
|
164 |
|
165 |
df_new = df.copy()
|
166 |
df_new['raw_scores'] = raw_scores
|
|
|
218 |
)
|
219 |
|
220 |
st.dataframe(df_display)
|
221 |
+
|
222 |
+
def important_words(reviews, num_words=5):
|
223 |
+
if len(reviews) == 0:
|
224 |
+
return []
|
225 |
+
vectorizer = TfidfVectorizer(stop_words=stopwords_list, max_features=10000)
|
226 |
+
vectors = vectorizer.fit_transform(reviews)
|
227 |
+
features = vectorizer.get_feature_names_out()
|
228 |
+
indices = np.argsort(vectorizer.idf_)[::-1]
|
229 |
+
top_features = [features[i] for i in indices[:num_words]]
|
230 |
+
return top_features
|
231 |
|
232 |
def display_ratings(df, review_column):
|
233 |
cols = st.columns(5)
|
234 |
|
235 |
for i in range(1, 6):
|
236 |
+
rating_reviews = df[df['Rating'] == i][review_column]
|
237 |
+
top_words = important_words(rating_reviews)
|
238 |
+
|
239 |
+
rating_counts = rating_reviews.shape[0]
|
240 |
cols[i-1].markdown(f"### {rating_counts}")
|
241 |
cols[i-1].markdown(f"{'⭐' * i}")
|
242 |
+
|
243 |
+
# Display the most important words for each rating
|
244 |
+
cols[i-1].markdown(f"#### Most Important Words:")
|
245 |
+
if top_words:
|
246 |
+
for word in top_words:
|
247 |
+
cols[i-1].markdown(f"**{word}**")
|
248 |
+
else:
|
249 |
+
cols[i-1].markdown("No important words to display")
|
250 |
+
|
251 |
+
|
252 |
|
253 |
|
254 |
|
requirements.txt
CHANGED
@@ -5,4 +5,8 @@ torch
|
|
5 |
stqdm
|
6 |
openpyxl
|
7 |
wordcloud
|
8 |
-
matplotlib
|
|
|
|
|
|
|
|
|
|
5 |
stqdm
|
6 |
openpyxl
|
7 |
wordcloud
|
8 |
+
matplotlib
|
9 |
+
fuzzywuzzy
|
10 |
+
scikit-learn
|
11 |
+
nltk
|
12 |
+
numpy
|