BulatF's picture
Update app.py
e918452
raw
history blame
9.65 kB
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
from fuzzywuzzy import fuzz
from sklearn.feature_extraction.text import TfidfVectorizer
import torch.nn.functional as F
import torch
import io
import base64
from stqdm import stqdm
import nltk
import gc
from nltk.corpus import stopwords
nltk.download('stopwords')
import matplotlib.pyplot as plt
import numpy as np
stopwords_list = stopwords.words('english') + ['your_additional_stopwords_here']
# Define the model and tokenizer
model_name = 'nlptown/bert-base-multilingual-uncased-sentiment'
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
st.set_page_config(layout="wide")
# Import the new model and tokenizer
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
BATCH_SIZE = 20
#defs
def classify_reviews(reviews):
probabilities = []
for i in range(0, len(reviews), BATCH_SIZE):
inputs = tokenizer(reviews[i:i+BATCH_SIZE], return_tensors='pt', truncation=True, padding=True, max_length=512)
outputs = model(**inputs)
probabilities.extend(F.softmax(outputs.logits, dim=1).tolist())
del inputs
del outputs
gc.collect() # manually invoke garbage collector here
return probabilities
def top_rating(scores):
return scores.index(max(scores)) + 1
def top_prob(scores):
return max(scores)
def get_table_download_link(df):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
return f'<a href="data:file/csv;base64,{b64}" download="data.csv">Download csv file</a>'
def filter_dataframe(df, review_column, filter_words):
# Return full DataFrame if filter_words is empty or contains only spaces
if not filter_words or all(word.isspace() for word in filter_words):
return df
filter_scores = df[review_column].apply(lambda x: max([fuzz.token_set_ratio(x, word) for word in filter_words]))
return df[filter_scores > 70] # Adjust this threshold as necessary
def process_filter_words(filter_words_input):
filter_words = [word.strip() for word in filter_words_input.split(',')]
return filter_words
# Function for classifying with the new model
def classify_with_new_classes(reviews, class_names):
class_scores = []
for i in range(0, len(reviews), BATCH_SIZE):
batch_reviews = reviews[i:i+BATCH_SIZE]
for review in batch_reviews:
result = classifier(review, class_names)
scores_dict = dict(zip(result['labels'], result['scores']))
# Reorder scores to match the original class_names order
scores = [scores_dict[name] for name in class_names]
class_scores.append(scores)
return class_scores
def main():
st.title('Sentiment Analysis')
st.markdown('Upload an Excel file to get sentiment analytics')
file = st.file_uploader("Upload an excel file", type=['xlsx'])
review_column = None
df = None
class_names = None # New variable for class names
if file is not None:
try:
df = pd.read_excel(file)
# Drop rows where all columns are NaN
df = df.dropna(how='all')
# Replace blank spaces with NaN, then drop rows where all columns are NaN again
df = df.replace(r'^\s*$', np.nan, regex=True)
df = df.dropna(how='all')
review_column = st.selectbox('Select the column from your excel file containing text', df.columns)
df[review_column] = df[review_column].astype(str)
filter_words_input = st.text_input('Enter words to filter the data by, separated by comma (or leave empty)') # New input field for filter words
filter_words = [] if filter_words_input.strip() == "" else process_filter_words(filter_words_input) # Process the filter words
class_names = st.text_input('Enter the possible class names separated by comma') # New input field for class names
df = filter_dataframe(df, review_column, filter_words) # Filter the DataFrame
except Exception as e:
st.write("An error occurred while reading the uploaded file. Please make sure it's a valid Excel file.")
return
start_button = st.button('Start Analysis')
if start_button and df is not None:
# Drop rows with NaN or blank values in the review_column
df = df[df[review_column].notna()]
df = df[df[review_column].str.strip() != '']
class_names = [name.strip() for name in class_names.split(',')] # Split class names into a list
for name in class_names: # Add a new column for each class name
if name not in df.columns:
df[name] = 0.0
if review_column in df.columns:
with st.spinner('Performing sentiment analysis...'):
df, df_display = process_reviews(df, review_column, class_names)
display_ratings(df, review_column) # updated this line
display_dataframe(df, df_display)
else:
st.write(f'No column named "{review_column}" found in the uploaded file.')
def process_reviews(df, review_column, class_names):
with st.spinner('Classifying reviews...'):
progress_bar = st.progress(0)
total_reviews = len(df[review_column].tolist())
review_counter = 0
raw_scores = classify_reviews(df[review_column].tolist())
for i in range(0, len(raw_scores), BATCH_SIZE):
review_counter += min(BATCH_SIZE, len(raw_scores) - i) # Avoids overshooting the total reviews count
progress = min(review_counter / total_reviews, 1) # Ensures progress does not exceed 1
progress_bar.progress(progress)
with st.spinner('Generating classes...'):
class_scores = classify_with_new_classes(df[review_column].tolist(), class_names)
class_scores_dict = {} # New dictionary to store class scores
for i, name in enumerate(class_names):
df[name] = [score[i] for score in class_scores]
class_scores_dict[name] = [score[i] for score in class_scores]
# Add a new column with the class that has the highest score
if class_names and not all(name.isspace() for name in class_names):
df['Highest Class'] = df[class_names].idxmax(axis=1)
df_new = df.copy()
df_new['raw_scores'] = raw_scores
scores_to_df(df_new)
df_display = scores_to_percent(df_new.copy())
# Get all columns excluding the created ones and the review_column
remaining_columns = [col for col in df.columns if col not in [review_column, 'raw_scores', 'Weighted Rating', 'Rating', 'Probability', '1 Star', '2 Star', '3 Star', '4 Star', '5 Star', 'Highest Class'] + class_names]
# Reorder the dataframe with selected columns first, created columns next, then the remaining columns
df_new = df_new[[review_column, 'Weighted Rating', 'Rating', 'Probability', '1 Star', '2 Star', '3 Star', '4 Star', '5 Star'] + class_names + ['Highest Class'] + remaining_columns]
# Reorder df_display as well
df_display = df_display[[review_column, 'Weighted Rating', 'Rating', 'Probability', '1 Star', '2 Star', '3 Star', '4 Star', '5 Star'] + class_names + ['Highest Class'] + remaining_columns]
return df_new, df_display
def scores_to_df(df):
for i in range(1, 6):
df[f'{i} Star'] = df['raw_scores'].apply(lambda scores: scores[i-1]).round(2)
df['Rating'] = df['raw_scores'].apply(top_rating)
df['Probability'] = df['raw_scores'].apply(top_prob).round(2)
# Compute the Weighted Rating
df['Weighted Rating'] = sum(df[f'{i} Star']*i for i in range(1, 6))
df.drop(columns=['raw_scores'], inplace=True)
def scores_to_percent(df):
for i in range(1, 6):
df[f'{i} Star'] = df[f'{i} Star'].apply(lambda x: f'{x*100:.0f}%')
df['Probability'] = df['Probability'].apply(lambda x: f'{x*100:.0f}%')
return df
def convert_df_to_csv(df):
return df.to_csv(index=False).encode('utf-8')
def display_dataframe(df, df_display):
csv = convert_df_to_csv(df)
col1, col2, col3, col4, col5, col6, col7, col8, col9 = st.columns(9)
with col1:
st.download_button(
"Download CSV",
csv,
"data.csv",
"text/csv",
key='download-csv'
)
st.dataframe(df_display)
def important_words(reviews, num_words=5):
if len(reviews) == 0:
return []
vectorizer = TfidfVectorizer(stop_words=stopwords_list, max_features=10000)
vectors = vectorizer.fit_transform(reviews)
features = vectorizer.get_feature_names_out()
indices = np.argsort(vectorizer.idf_)[::-1]
top_features = [features[i] for i in indices[:num_words]]
return top_features
def display_ratings(df, review_column):
cols = st.columns(5)
for i in range(1, 6):
rating_reviews = df[df['Rating'] == i][review_column]
top_words = important_words(rating_reviews)
rating_counts = rating_reviews.shape[0]
cols[i-1].markdown(f"### {rating_counts}")
cols[i-1].markdown(f"{'⭐' * i}")
# Display the most important words for each rating
cols[i-1].markdown(f"#### Most Important Words:")
if top_words:
for word in top_words:
cols[i-1].markdown(f"**{word}**")
else:
cols[i-1].markdown("No important words to display")
if __name__ == "__main__":
main()