Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from transformers import pipeline | |
from fuzzywuzzy import fuzz | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
import torch.nn.functional as F | |
import torch | |
import io | |
import base64 | |
from stqdm import stqdm | |
import nltk | |
import gc | |
from nltk.corpus import stopwords | |
nltk.download('stopwords') | |
import matplotlib.pyplot as plt | |
import numpy as np | |
stopwords_list = stopwords.words('english') + ['your_additional_stopwords_here'] | |
# Define the model and tokenizer | |
model_name = 'nlptown/bert-base-multilingual-uncased-sentiment' | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
st.set_page_config(layout="wide") | |
# Import the new model and tokenizer | |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
BATCH_SIZE = 20 | |
#defs | |
def classify_reviews(reviews): | |
probabilities = [] | |
for i in range(0, len(reviews), BATCH_SIZE): | |
inputs = tokenizer(reviews[i:i+BATCH_SIZE], return_tensors='pt', truncation=True, padding=True, max_length=512) | |
outputs = model(**inputs) | |
probabilities.extend(F.softmax(outputs.logits, dim=1).tolist()) | |
del inputs | |
del outputs | |
gc.collect() # manually invoke garbage collector here | |
return probabilities | |
def top_rating(scores): | |
return scores.index(max(scores)) + 1 | |
def top_prob(scores): | |
return max(scores) | |
def get_table_download_link(df): | |
csv = df.to_csv(index=False) | |
b64 = base64.b64encode(csv.encode()).decode() | |
return f'<a href="data:file/csv;base64,{b64}" download="data.csv">Download csv file</a>' | |
def filter_dataframe(df, review_column, filter_words): | |
# Return full DataFrame if filter_words is empty or contains only spaces | |
if not filter_words or all(word.isspace() for word in filter_words): | |
return df | |
filter_scores = df[review_column].apply(lambda x: max([fuzz.token_set_ratio(x, word) for word in filter_words])) | |
return df[filter_scores > 70] # Adjust this threshold as necessary | |
def process_filter_words(filter_words_input): | |
filter_words = [word.strip() for word in filter_words_input.split(',')] | |
return filter_words | |
# Function for classifying with the new model | |
def classify_with_new_classes(reviews, class_names): | |
class_scores = [] | |
for i in range(0, len(reviews), BATCH_SIZE): | |
batch_reviews = reviews[i:i+BATCH_SIZE] | |
for review in batch_reviews: | |
result = classifier(review, class_names) | |
scores_dict = dict(zip(result['labels'], result['scores'])) | |
# Reorder scores to match the original class_names order | |
scores = [scores_dict[name] for name in class_names] | |
class_scores.append(scores) | |
return class_scores | |
def main(): | |
st.title('Sentiment Analysis') | |
st.markdown('Upload an Excel file to get sentiment analytics') | |
file = st.file_uploader("Upload an excel file", type=['xlsx']) | |
review_column = None | |
df = None | |
class_names = None # New variable for class names | |
if file is not None: | |
try: | |
df = pd.read_excel(file) | |
# Drop rows where all columns are NaN | |
df = df.dropna(how='all') | |
# Replace blank spaces with NaN, then drop rows where all columns are NaN again | |
df = df.replace(r'^\s*$', np.nan, regex=True) | |
df = df.dropna(how='all') | |
review_column = st.selectbox('Select the column from your excel file containing text', df.columns) | |
df[review_column] = df[review_column].astype(str) | |
filter_words_input = st.text_input('Enter words to filter the data by, separated by comma (or leave empty)') # New input field for filter words | |
filter_words = [] if filter_words_input.strip() == "" else process_filter_words(filter_words_input) # Process the filter words | |
class_names = st.text_input('Enter the possible class names separated by comma') # New input field for class names | |
df = filter_dataframe(df, review_column, filter_words) # Filter the DataFrame | |
except Exception as e: | |
st.write("An error occurred while reading the uploaded file. Please make sure it's a valid Excel file.") | |
return | |
start_button = st.button('Start Analysis') | |
if start_button and df is not None: | |
# Drop rows with NaN or blank values in the review_column | |
df = df[df[review_column].notna()] | |
df = df[df[review_column].str.strip() != ''] | |
class_names = [name.strip() for name in class_names.split(',')] # Split class names into a list | |
for name in class_names: # Add a new column for each class name | |
if name not in df.columns: | |
df[name] = 0.0 | |
if review_column in df.columns: | |
with st.spinner('Performing sentiment analysis...'): | |
df, df_display = process_reviews(df, review_column, class_names) | |
display_ratings(df, review_column) # updated this line | |
display_dataframe(df, df_display) | |
else: | |
st.write(f'No column named "{review_column}" found in the uploaded file.') | |
def process_reviews(df, review_column, class_names): | |
with st.spinner('Classifying reviews...'): | |
progress_bar = st.progress(0) | |
total_reviews = len(df[review_column].tolist()) | |
review_counter = 0 | |
raw_scores = classify_reviews(df[review_column].tolist()) | |
for i in range(0, len(raw_scores), BATCH_SIZE): | |
review_counter += min(BATCH_SIZE, len(raw_scores) - i) # Avoids overshooting the total reviews count | |
progress = min(review_counter / total_reviews, 1) # Ensures progress does not exceed 1 | |
progress_bar.progress(progress) | |
with st.spinner('Generating classes...'): | |
class_scores = classify_with_new_classes(df[review_column].tolist(), class_names) | |
class_scores_dict = {} # New dictionary to store class scores | |
for i, name in enumerate(class_names): | |
df[name] = [score[i] for score in class_scores] | |
class_scores_dict[name] = [score[i] for score in class_scores] | |
# Add a new column with the class that has the highest score | |
if class_names and not all(name.isspace() for name in class_names): | |
df['Highest Class'] = df[class_names].idxmax(axis=1) | |
df_new = df.copy() | |
df_new['raw_scores'] = raw_scores | |
scores_to_df(df_new) | |
df_display = scores_to_percent(df_new.copy()) | |
# Get all columns excluding the created ones and the review_column | |
remaining_columns = [col for col in df.columns if col not in [review_column, 'raw_scores', 'Weighted Rating', 'Rating', 'Probability', '1 Star', '2 Star', '3 Star', '4 Star', '5 Star', 'Highest Class'] + class_names] | |
# Reorder the dataframe with selected columns first, created columns next, then the remaining columns | |
df_new = df_new[[review_column, 'Weighted Rating', 'Rating', 'Probability', '1 Star', '2 Star', '3 Star', '4 Star', '5 Star'] + class_names + ['Highest Class'] + remaining_columns] | |
# Reorder df_display as well | |
df_display = df_display[[review_column, 'Weighted Rating', 'Rating', 'Probability', '1 Star', '2 Star', '3 Star', '4 Star', '5 Star'] + class_names + ['Highest Class'] + remaining_columns] | |
return df_new, df_display | |
def scores_to_df(df): | |
for i in range(1, 6): | |
df[f'{i} Star'] = df['raw_scores'].apply(lambda scores: scores[i-1]).round(2) | |
df['Rating'] = df['raw_scores'].apply(top_rating) | |
df['Probability'] = df['raw_scores'].apply(top_prob).round(2) | |
# Compute the Weighted Rating | |
df['Weighted Rating'] = sum(df[f'{i} Star']*i for i in range(1, 6)) | |
df.drop(columns=['raw_scores'], inplace=True) | |
def scores_to_percent(df): | |
for i in range(1, 6): | |
df[f'{i} Star'] = df[f'{i} Star'].apply(lambda x: f'{x*100:.0f}%') | |
df['Probability'] = df['Probability'].apply(lambda x: f'{x*100:.0f}%') | |
return df | |
def convert_df_to_csv(df): | |
return df.to_csv(index=False).encode('utf-8') | |
def display_dataframe(df, df_display): | |
csv = convert_df_to_csv(df) | |
col1, col2, col3, col4, col5, col6, col7, col8, col9 = st.columns(9) | |
with col1: | |
st.download_button( | |
"Download CSV", | |
csv, | |
"data.csv", | |
"text/csv", | |
key='download-csv' | |
) | |
st.dataframe(df_display) | |
def important_words(reviews, num_words=5): | |
if len(reviews) == 0: | |
return [] | |
vectorizer = TfidfVectorizer(stop_words=stopwords_list, max_features=10000) | |
vectors = vectorizer.fit_transform(reviews) | |
features = vectorizer.get_feature_names_out() | |
indices = np.argsort(vectorizer.idf_)[::-1] | |
top_features = [features[i] for i in indices[:num_words]] | |
return top_features | |
def display_ratings(df, review_column): | |
cols = st.columns(5) | |
for i in range(1, 6): | |
rating_reviews = df[df['Rating'] == i][review_column] | |
top_words = important_words(rating_reviews) | |
rating_counts = rating_reviews.shape[0] | |
cols[i-1].markdown(f"### {rating_counts}") | |
cols[i-1].markdown(f"{'⭐' * i}") | |
# Display the most important words for each rating | |
cols[i-1].markdown(f"#### Most Important Words:") | |
if top_words: | |
for word in top_words: | |
cols[i-1].markdown(f"**{word}**") | |
else: | |
cols[i-1].markdown("No important words to display") | |
if __name__ == "__main__": | |
main() | |