HVAC / pages /heating_calculator.py
mabuseif's picture
Upload 13 files
a1d7129 verified
"""
Heating Load Calculator Page
This module implements the heating load calculator interface for the HVAC Load Calculator web application.
It provides a step-by-step form for inputting building information and calculates heating loads
using the ASHRAE method.
"""
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import json
import os
import sys
from pathlib import Path
from datetime import datetime
# Add the parent directory to sys.path to import modules
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# Import custom modules
from heating_load import HeatingLoadCalculator
from reference_data import ReferenceData
from utils.validation import validate_input, ValidationWarning
from utils.export import export_data
def load_session_state():
"""Initialize or load session state variables."""
# Initialize session state for form data
if 'heating_form_data' not in st.session_state:
st.session_state.heating_form_data = {
'building_info': {},
'building_envelope': {},
'windows': {},
'ventilation': {},
'occupancy': {},
'results': {}
}
# Initialize session state for validation warnings
if 'heating_warnings' not in st.session_state:
st.session_state.heating_warnings = {
'building_info': [],
'building_envelope': [],
'windows': [],
'ventilation': [],
'occupancy': []
}
# Initialize session state for form completion status
if 'heating_completed' not in st.session_state:
st.session_state.heating_completed = {
'building_info': False,
'building_envelope': False,
'windows': False,
'ventilation': False,
'occupancy': False
}
# Initialize session state for calculation results
if 'heating_results' not in st.session_state:
st.session_state.heating_results = None
def building_info_form(ref_data):
"""
Form for building information.
Args:
ref_data: Reference data object
"""
st.subheader("Building Information")
st.write("Enter general building information, location, and design temperatures.")
# Get location options from reference data
location_options = {loc_id: loc_data['name'] for loc_id, loc_data in ref_data.locations.items()}
col1, col2 = st.columns(2)
with col1:
# Building name
building_name = st.text_input(
"Building Name",
value=st.session_state.heating_form_data['building_info'].get('building_name', ''),
help="Enter a name for this building or project"
)
# Location selection
location = st.selectbox(
"Location",
options=list(location_options.keys()),
format_func=lambda x: location_options[x],
index=list(location_options.keys()).index(st.session_state.heating_form_data['building_info'].get('location', 'sydney')) if st.session_state.heating_form_data['building_info'].get('location') in location_options else 0,
help="Select the location of the building"
)
# Get climate data for selected location
location_data = ref_data.get_location_data(location)
# Indoor design temperature
indoor_temp = st.number_input(
"Indoor Design Temperature (°C)",
value=float(st.session_state.heating_form_data['building_info'].get('indoor_temp', 21.0)),
min_value=15.0,
max_value=25.0,
step=0.5,
help="Recommended indoor design temperature for heating is 21°C for living areas and 17°C for bedrooms"
)
with col2:
# Building type
building_type = st.selectbox(
"Building Type",
options=["Residential", "Small Office", "Educational", "Other"],
index=["Residential", "Small Office", "Educational", "Other"].index(st.session_state.heating_form_data['building_info'].get('building_type', 'Residential')),
help="Select the type of building"
)
# Outdoor design temperature (with default from location data)
outdoor_temp = st.number_input(
"Outdoor Design Temperature (°C)",
value=float(st.session_state.heating_form_data['building_info'].get('outdoor_temp', location_data['winter_design_temp'])),
min_value=-10.0,
max_value=15.0,
step=0.5,
help=f"Default value is based on selected location ({location_data['name']})"
)
# Building dimensions
st.subheader("Building Dimensions")
col1, col2, col3 = st.columns(3)
with col1:
length = st.number_input(
"Length (m)",
value=float(st.session_state.heating_form_data['building_info'].get('length', 10.0)),
min_value=1.0,
step=0.1,
help="Building length in meters"
)
with col2:
width = st.number_input(
"Width (m)",
value=float(st.session_state.heating_form_data['building_info'].get('width', 8.0)),
min_value=1.0,
step=0.1,
help="Building width in meters"
)
with col3:
height = st.number_input(
"Height (m)",
value=float(st.session_state.heating_form_data['building_info'].get('height', 2.7)),
min_value=1.0,
step=0.1,
help="Floor-to-ceiling height in meters"
)
# Calculate floor area and volume
floor_area = length * width
volume = floor_area * height
st.info(f"Floor Area: {floor_area:.2f} m² | Volume: {volume:.2f} m³")
# Save form data to session state
form_data = {
'building_name': building_name,
'building_type': building_type,
'location': location,
'location_name': location_data['name'],
'indoor_temp': indoor_temp,
'outdoor_temp': outdoor_temp,
'length': length,
'width': width,
'height': height,
'floor_area': floor_area,
'volume': volume,
'temp_diff': indoor_temp - outdoor_temp
}
# Validate inputs
warnings = []
# Check if building name is provided
if not building_name:
warnings.append(ValidationWarning("Building name is empty", "Consider adding a building name for reference"))
# Check if temperature difference is reasonable
if form_data['temp_diff'] <= 0:
warnings.append(ValidationWarning(
"Invalid temperature difference",
"Indoor temperature should be higher than outdoor temperature for heating load calculation",
is_critical=False # Changed to non-critical to allow proceeding with warnings
))
# Check if dimensions are reasonable
if floor_area > 500:
warnings.append(ValidationWarning(
"Large floor area",
"Floor area exceeds 500 m², verify if this is correct for a residential building"
))
if height < 2.4 or height > 3.5:
warnings.append(ValidationWarning(
"Unusual ceiling height",
"Typical residential ceiling heights are between 2.4m and 3.5m"
))
# Save warnings to session state
st.session_state.heating_warnings['building_info'] = warnings
# Display warnings if any
if warnings:
st.warning("Please review the following warnings:")
for warning in warnings:
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
st.write(f" Suggestion: {warning.suggestion}")
# Save form data regardless of warnings
st.session_state.heating_form_data['building_info'] = form_data
# Mark this step as completed if there are no critical warnings
st.session_state.heating_completed['building_info'] = not any(w.is_critical for w in warnings)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col2:
next_button = st.button("Next: Building Envelope →", key="heating_building_info_next")
if next_button:
st.session_state.heating_active_tab = "building_envelope"
st.experimental_rerun()
def building_envelope_form(ref_data):
"""
Form for building envelope information.
Args:
ref_data: Reference data object
"""
st.subheader("Building Envelope")
st.write("Enter information about walls, roof, and floor construction.")
# Get building dimensions from previous step
building_info = st.session_state.heating_form_data['building_info']
length = building_info.get('length', 10.0)
width = building_info.get('width', 8.0)
height = building_info.get('height', 2.7)
temp_diff = building_info.get('temp_diff', 16.5)
# Calculate default areas
default_wall_area = 2 * (length + width) * height
default_roof_area = length * width
default_floor_area = length * width
# Initialize envelope data if not already in session state
if 'walls' not in st.session_state.heating_form_data['building_envelope']:
st.session_state.heating_form_data['building_envelope']['walls'] = []
if 'roof' not in st.session_state.heating_form_data['building_envelope']:
st.session_state.heating_form_data['building_envelope']['roof'] = {}
if 'floor' not in st.session_state.heating_form_data['building_envelope']:
st.session_state.heating_form_data['building_envelope']['floor'] = {}
# Walls section
st.write("### Walls")
# Get wall material options from reference data
wall_material_options = {mat_id: mat_data['name'] for mat_id, mat_data in ref_data.materials['walls'].items()}
# Add custom option
wall_material_options["custom_walls"] = "Custom Wall (User-defined)"
# Display existing wall entries
if st.session_state.heating_form_data['building_envelope']['walls']:
st.write("Current walls:")
walls_df = pd.DataFrame(st.session_state.heating_form_data['building_envelope']['walls'])
walls_df['Material'] = walls_df['material_id'].map(lambda x: wall_material_options.get(x, "Unknown"))
# Add orientation column with default value if not present
walls_df['orientation'] = walls_df['orientation'].fillna('not specified')
walls_df = walls_df[['name', 'Material', 'area', 'u_value', 'orientation']]
walls_df.columns = ['Name', 'Material', 'Area (m²)', 'U-Value (W/m²°C)', 'Orientation']
st.dataframe(walls_df)
# Add new wall form
st.write("Add a new wall:")
col1, col2 = st.columns(2)
with col1:
wall_name = st.text_input("Wall Name", value="", key="new_wall_name_heating")
wall_material = st.selectbox(
"Wall Material",
options=list(wall_material_options.keys()),
format_func=lambda x: wall_material_options[x],
key="new_wall_material_heating"
)
# Add wall orientation selection
wall_orientation = st.selectbox(
"Wall Orientation",
options=["north", "east", "south", "west"],
key="new_wall_orientation_heating"
)
# Get material properties
material_data = ref_data.get_material_by_type("walls", wall_material)
u_value = material_data['u_value']
# Add custom U-value input if custom material is selected
if wall_material == "custom_walls":
u_value = st.number_input(
"Custom U-Value (W/m²°C)",
value=1.0,
min_value=0.1,
max_value=5.0,
step=0.1,
key="custom_wall_u_value_heating"
)
# Store custom material in session state
if "custom_materials" not in st.session_state:
st.session_state.custom_materials = {}
st.session_state.custom_materials["walls"] = {
"name": "Custom Wall",
"u_value": u_value,
"r_value": 1.0 / u_value if u_value > 0 else 1.0,
"description": "Custom wall with user-defined properties"
}
with col2:
wall_area = st.number_input(
"Wall Area (m²)",
value=default_wall_area / 4, # Default to 1/4 of total wall area as a starting point
min_value=0.1,
step=0.1,
key="new_wall_area_heating"
)
st.write(f"Material U-Value: {u_value} W/m²°C")
st.write(f"Heat Loss: {u_value * wall_area * temp_diff:.2f} W")
# Add wall button
if st.button("Add Wall", key="add_wall_heating"):
new_wall = {
'name': wall_name if wall_name else f"Wall {len(st.session_state.heating_form_data['building_envelope']['walls']) + 1}",
'material_id': wall_material,
'area': wall_area,
'u_value': u_value,
'temp_diff': temp_diff,
'orientation': wall_orientation # Add orientation to wall data
}
st.session_state.heating_form_data['building_envelope']['walls'].append(new_wall)
st.experimental_rerun()
# Roof section
st.write("### Roof")
# Get roof material options from reference data
roof_material_options = {mat_id: mat_data['name'] for mat_id, mat_data in ref_data.materials['roofs'].items()}
# Add custom option
roof_material_options["custom_roofs"] = "Custom Roof (User-defined)"
col1, col2 = st.columns(2)
with col1:
roof_material = st.selectbox(
"Roof Material",
options=list(roof_material_options.keys()),
format_func=lambda x: roof_material_options[x],
index=list(roof_material_options.keys()).index(st.session_state.heating_form_data['building_envelope'].get('roof', {}).get('material_id', 'metal_deck_insulated')) if st.session_state.heating_form_data['building_envelope'].get('roof', {}).get('material_id') in roof_material_options else 0
)
# Get material properties
material_data = ref_data.get_material_by_type("roofs", roof_material)
roof_u_value = material_data['u_value']
# Add custom U-value input if custom material is selected
if roof_material == "custom_roofs":
roof_u_value = st.number_input(
"Custom Roof U-Value (W/m²°C)",
value=1.0,
min_value=0.1,
max_value=5.0,
step=0.1,
key="custom_roof_u_value_heating"
)
# Store custom material in session state
if "custom_materials" not in st.session_state:
st.session_state.custom_materials = {}
st.session_state.custom_materials["roofs"] = {
"name": "Custom Roof",
"u_value": roof_u_value,
"r_value": 1.0 / roof_u_value if roof_u_value > 0 else 1.0,
"description": "Custom roof with user-defined properties"
}
with col2:
roof_area = st.number_input(
"Roof Area (m²)",
value=float(st.session_state.heating_form_data['building_envelope'].get('roof', {}).get('area', default_roof_area)),
min_value=0.1,
step=0.1,
key="roof_area_heating"
)
st.write(f"Material U-Value: {roof_u_value} W/m²°C")
st.write(f"Heat Loss: {roof_u_value * roof_area * temp_diff:.2f} W")
# Save roof data
st.session_state.heating_form_data['building_envelope']['roof'] = {
'material_id': roof_material,
'area': roof_area,
'u_value': roof_u_value,
'temp_diff': temp_diff
}
# Floor section
st.write("### Floor")
# Get floor material options from reference data
floor_material_options = {mat_id: mat_data['name'] for mat_id, mat_data in ref_data.materials['floors'].items()}
# Add custom option
floor_material_options["custom_floors"] = "Custom Floor (User-defined)"
col1, col2 = st.columns(2)
with col1:
floor_material = st.selectbox(
"Floor Material",
options=list(floor_material_options.keys()),
format_func=lambda x: floor_material_options[x],
index=list(floor_material_options.keys()).index(st.session_state.heating_form_data['building_envelope'].get('floor', {}).get('material_id', 'concrete_slab_ground')) if st.session_state.heating_form_data['building_envelope'].get('floor', {}).get('material_id') in floor_material_options else 0
)
# Get material properties
material_data = ref_data.get_material_by_type("floors", floor_material)
floor_u_value = material_data['u_value']
# Add custom U-value input if custom material is selected
if floor_material == "custom_floors":
floor_u_value = st.number_input(
"Custom Floor U-Value (W/m²°C)",
value=1.0,
min_value=0.1,
max_value=5.0,
step=0.1,
key="custom_floor_u_value_heating"
)
# Store custom material in session state
if "custom_materials" not in st.session_state:
st.session_state.custom_materials = {}
st.session_state.custom_materials["floors"] = {
"name": "Custom Floor",
"u_value": floor_u_value,
"r_value": 1.0 / floor_u_value if floor_u_value > 0 else 1.0,
"description": "Custom floor with user-defined properties"
}
with col2:
floor_area = st.number_input(
"Floor Area (m²)",
value=float(st.session_state.heating_form_data['building_envelope'].get('floor', {}).get('area', default_floor_area)),
min_value=0.1,
step=0.1,
key="floor_area_heating"
)
st.write(f"Material U-Value: {floor_u_value} W/m²°C")
st.write(f"Heat Loss: {floor_u_value * floor_area * temp_diff:.2f} W")
# Save floor data
st.session_state.heating_form_data['building_envelope']['floor'] = {
'material_id': floor_material,
'area': floor_area,
'u_value': floor_u_value,
'temp_diff': temp_diff
}
# Validate inputs
warnings = []
# Check if walls are defined
if not st.session_state.heating_form_data['building_envelope']['walls']:
warnings.append(ValidationWarning(
"No walls defined",
"Add at least one wall to continue",
is_critical=False # Changed to non-critical to allow proceeding with warnings
))
# Check if total wall area is reasonable
total_wall_area = sum(wall['area'] for wall in st.session_state.heating_form_data['building_envelope']['walls'])
expected_wall_area = 2 * (length + width) * height
if total_wall_area < expected_wall_area * 0.8 or total_wall_area > expected_wall_area * 1.2:
warnings.append(ValidationWarning(
"Unusual wall area",
f"Total wall area ({total_wall_area:.2f} m²) differs significantly from the expected area ({expected_wall_area:.2f} m²) based on building dimensions"
))
# Check if roof area matches floor area
if abs(roof_area - floor_area) > 1.0:
warnings.append(ValidationWarning(
"Roof area doesn't match floor area",
"For a simple building, roof area should approximately match floor area"
))
# Save warnings to session state
st.session_state.heating_warnings['building_envelope'] = warnings
# Display warnings if any
if warnings:
st.warning("Please review the following warnings:")
for warning in warnings:
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
st.write(f" Suggestion: {warning.suggestion}")
# Mark this step as completed if there are no critical warnings
st.session_state.heating_completed['building_envelope'] = not any(w.is_critical for w in warnings)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col1:
prev_button = st.button("← Back: Building Information", key="heating_building_envelope_prev")
if prev_button:
st.session_state.heating_active_tab = "building_info"
st.experimental_rerun()
with col2:
next_button = st.button("Next: Windows & Doors →", key="heating_building_envelope_next")
if next_button:
st.session_state.heating_active_tab = "windows"
st.experimental_rerun()
def windows_form(ref_data):
"""
Form for windows and doors information.
Args:
ref_data: Reference data object
"""
st.subheader("Windows & Doors")
st.write("Enter information about windows and doors.")
# Get temperature difference from building info
temp_diff = st.session_state.heating_form_data['building_info'].get('temp_diff', 16.5)
# Initialize windows data if not already in session state
if 'windows' not in st.session_state.heating_form_data['windows']:
st.session_state.heating_form_data['windows']['windows'] = []
if 'doors' not in st.session_state.heating_form_data['windows']:
st.session_state.heating_form_data['windows']['doors'] = []
# Windows section
st.write("### Windows")
# Get glass type options from reference data
glass_type_options = {glass_id: glass_data['name'] for glass_id, glass_data in ref_data.glass_types.items()}
# Display existing window entries
if st.session_state.heating_form_data['windows']['windows']:
st.write("Current windows:")
windows_df = pd.DataFrame(st.session_state.heating_form_data['windows']['windows'])
windows_df['Glass Type'] = windows_df['glass_type'].map(lambda x: glass_type_options.get(x, "Unknown"))
windows_df = windows_df[['name', 'orientation', 'Glass Type', 'area', 'u_value']]
windows_df.columns = ['Name', 'Orientation', 'Glass Type', 'Area (m²)', 'U-Value (W/m²°C)']
st.dataframe(windows_df)
# Add new window form
st.write("Add a new window:")
col1, col2 = st.columns(2)
with col1:
window_name = st.text_input("Window Name", value="", key="new_window_name_heating")
orientation = st.selectbox(
"Orientation",
options=["north", "east", "south", "west", "horizontal"],
key="new_window_orientation_heating"
)
glass_type = st.selectbox(
"Glass Type",
options=list(glass_type_options.keys()),
format_func=lambda x: glass_type_options[x],
key="new_window_glass_type_heating"
)
# Get glass properties
glass_data = ref_data.get_glass_type(glass_type)
window_u_value = glass_data['u_value']
with col2:
window_area = st.number_input(
"Window Area (m²)",
value=2.0,
min_value=0.1,
step=0.1,
key="new_window_area_heating"
)
st.write(f"Glass U-Value: {window_u_value} W/m²°C")
st.write(f"Heat Loss: {window_u_value * window_area * temp_diff:.2f} W")
# Add window button
if st.button("Add Window", key="add_window_heating"):
new_window = {
'name': window_name if window_name else f"Window {len(st.session_state.heating_form_data['windows']['windows']) + 1}",
'orientation': orientation,
'glass_type': glass_type,
'area': window_area,
'u_value': window_u_value,
'temp_diff': temp_diff
}
st.session_state.heating_form_data['windows']['windows'].append(new_window)
st.experimental_rerun()
# Doors section
st.write("### Doors")
# Display existing door entries
if st.session_state.heating_form_data['windows']['doors']:
st.write("Current doors:")
doors_df = pd.DataFrame(st.session_state.heating_form_data['windows']['doors'])
doors_df = doors_df[['name', 'type', 'area', 'u_value']]
doors_df.columns = ['Name', 'Type', 'Area (m²)', 'U-Value (W/m²°C)']
st.dataframe(doors_df)
# Add new door form
st.write("Add a new door:")
col1, col2 = st.columns(2)
with col1:
door_name = st.text_input("Door Name", value="", key="new_door_name_heating")
door_type = st.selectbox(
"Door Type",
options=["Solid wood", "Hollow core", "Glass", "Insulated"],
key="new_door_type_heating"
)
# Set U-value based on door type
door_u_values = {
"Solid wood": 2.0,
"Hollow core": 2.5,
"Glass": 5.0,
"Insulated": 1.2
}
door_u_value = door_u_values[door_type]
with col2:
door_area = st.number_input(
"Door Area (m²)",
value=2.0,
min_value=0.1,
step=0.1,
key="new_door_area_heating"
)
st.write(f"Door U-Value: {door_u_value} W/m²°C")
st.write(f"Heat Loss: {door_u_value * door_area * temp_diff:.2f} W")
# Add door button
if st.button("Add Door", key="add_door_heating"):
new_door = {
'name': door_name if door_name else f"Door {len(st.session_state.heating_form_data['windows']['doors']) + 1}",
'type': door_type,
'area': door_area,
'u_value': door_u_value,
'temp_diff': temp_diff
}
st.session_state.heating_form_data['windows']['doors'].append(new_door)
st.experimental_rerun()
# Validate inputs
warnings = []
# Check if windows are defined
if not st.session_state.heating_form_data['windows']['windows']:
warnings.append(ValidationWarning(
"No windows defined",
"Add at least one window to continue"
))
# Check window-to-wall ratio
if st.session_state.heating_form_data['windows']['windows']:
total_window_area = sum(window['area'] for window in st.session_state.heating_form_data['windows']['windows'])
total_wall_area = sum(wall['area'] for wall in st.session_state.heating_form_data['building_envelope']['walls'])
window_wall_ratio = total_window_area / total_wall_area if total_wall_area > 0 else 0
if window_wall_ratio > 0.6:
warnings.append(ValidationWarning(
"High window-to-wall ratio",
f"Window-to-wall ratio is {window_wall_ratio:.2f}, which is unusually high. Typical ratios are 0.2-0.4."
))
# Save warnings to session state
st.session_state.heating_warnings['windows'] = warnings
# Display warnings if any
if warnings:
st.warning("Please review the following warnings:")
for warning in warnings:
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
st.write(f" Suggestion: {warning.suggestion}")
# Mark this step as completed if there are no critical warnings
st.session_state.heating_completed['windows'] = not any(w.is_critical for w in warnings)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col1:
prev_button = st.button("← Back: Building Envelope", key="heating_windows_prev")
if prev_button:
st.session_state.heating_active_tab = "building_envelope"
st.experimental_rerun()
with col2:
next_button = st.button("Next: Ventilation →", key="heating_windows_next")
if next_button:
st.session_state.heating_active_tab = "ventilation"
st.experimental_rerun()
def ventilation_form(ref_data):
"""
Form for ventilation and infiltration information.
Args:
ref_data: Reference data object
"""
st.subheader("Ventilation & Infiltration")
st.write("Enter information about ventilation and infiltration rates.")
# Get building info
building_info = st.session_state.heating_form_data['building_info']
volume = building_info.get('volume', 216.0)
temp_diff = building_info.get('temp_diff', 16.5)
# Initialize ventilation data if not already in session state
if 'infiltration' not in st.session_state.heating_form_data['ventilation']:
st.session_state.heating_form_data['ventilation']['infiltration'] = {
'air_changes': 0.5
}
if 'ventilation' not in st.session_state.heating_form_data['ventilation']:
st.session_state.heating_form_data['ventilation']['ventilation'] = {
'type': 'natural',
'air_changes': 0.0
}
# Initialize internal loads data if not already in session state
if 'internal_loads' not in st.session_state.heating_form_data:
st.session_state.heating_form_data['internal_loads'] = {}
if 'occupants' not in st.session_state.heating_form_data['internal_loads']:
st.session_state.heating_form_data['internal_loads']['occupants'] = {
'count': 4,
'activity_level': 'seated_resting'
}
if 'lighting' not in st.session_state.heating_form_data['internal_loads']:
st.session_state.heating_form_data['internal_loads']['lighting'] = {
'type': 'led',
'power_density': 5.0 # W/m²
}
if 'appliances' not in st.session_state.heating_form_data['internal_loads']:
st.session_state.heating_form_data['internal_loads']['appliances'] = {
'kitchen': True,
'living_room': True,
'bedroom': True,
'office': False
}
# Infiltration section
st.write("### Infiltration")
st.write("Infiltration is the unintended air leakage through the building envelope.")
infiltration_ach = st.slider(
"Infiltration Rate (air changes per hour)",
value=float(st.session_state.heating_form_data['ventilation']['infiltration'].get('air_changes', 0.5)),
min_value=0.1,
max_value=2.0,
step=0.1,
help="Typical values: 0.5 ACH for modern construction, 1.0 ACH for average construction, 1.5+ ACH for older buildings",
key="infiltration_ach_heating"
)
# Calculate infiltration heat loss
infiltration_heat_loss = 0.33 * volume * infiltration_ach * temp_diff
st.write(f"Infiltration heat loss: {infiltration_heat_loss:.2f} W")
# Save infiltration data
st.session_state.heating_form_data['ventilation']['infiltration'] = {
'air_changes': infiltration_ach,
'volume': volume,
'temp_diff': temp_diff,
'heat_loss': infiltration_heat_loss
}
# Ventilation section
st.write("### Ventilation")
st.write("Ventilation is the intentional introduction of outside air into the building.")
# Internal Loads section
st.write("### Internal Loads")
st.write("Internal loads are heat sources inside the building that reduce heating requirements.")
# Occupants section
st.write("#### Occupants")
col1, col2 = st.columns(2)
with col1:
occupant_count = st.number_input(
"Number of Occupants",
value=int(st.session_state.heating_form_data['internal_loads']['occupants'].get('count', 4)),
min_value=1,
step=1,
key="occupant_count_heating"
)
with col2:
# Get activity level options from reference data
activity_options = {act_id: act_data['name'] for act_id, act_data in ref_data.internal_loads['people'].items()}
activity_level = st.selectbox(
"Activity Level",
options=list(activity_options.keys()),
format_func=lambda x: activity_options[x],
index=list(activity_options.keys()).index(st.session_state.heating_form_data['internal_loads']['occupants'].get('activity_level', 'seated_resting')) if st.session_state.heating_form_data['internal_loads']['occupants'].get('activity_level') in activity_options else 0,
key="activity_level_heating"
)
# Get heat gain per person
activity_data = ref_data.get_internal_load('people', activity_level)
sensible_heat_pp = activity_data['sensible_heat']
latent_heat_pp = activity_data['latent_heat']
total_heat_pp = sensible_heat_pp + latent_heat_pp
st.write(f"Heat gain per person: {total_heat_pp} W ({sensible_heat_pp} W sensible + {latent_heat_pp} W latent)")
st.write(f"Total occupant heat gain: {total_heat_pp * occupant_count} W")
# Save occupants data
st.session_state.heating_form_data['internal_loads']['occupants'] = {
'count': occupant_count,
'activity_level': activity_level,
'sensible_heat_pp': sensible_heat_pp,
'latent_heat_pp': latent_heat_pp,
'total_heat_gain': total_heat_pp * occupant_count
}
# Lighting section
st.write("#### Lighting")
col1, col2 = st.columns(2)
with col1:
# Get lighting type options from reference data
lighting_options = {light_id: light_data['name'] for light_id, light_data in ref_data.internal_loads['lighting'].items()}
lighting_type = st.selectbox(
"Lighting Type",
options=list(lighting_options.keys()),
format_func=lambda x: lighting_options[x],
index=list(lighting_options.keys()).index(st.session_state.heating_form_data['internal_loads']['lighting'].get('type', 'led')) if st.session_state.heating_form_data['internal_loads']['lighting'].get('type') in lighting_options else 0,
key="lighting_type_heating"
)
with col2:
lighting_power_density = st.number_input(
"Lighting Power Density (W/m²)",
value=float(st.session_state.heating_form_data['internal_loads']['lighting'].get('power_density', 5.0)),
min_value=1.0,
max_value=20.0,
step=0.5,
help="Typical values: Residential 5-10 W/m², Office 10-15 W/m²",
key="lighting_power_density_heating"
)
# Get lighting heat factor
lighting_data = ref_data.get_internal_load('lighting', lighting_type)
lighting_heat_factor = lighting_data['heat_factor']
# Calculate lighting heat gain
floor_area = st.session_state.heating_form_data['building_info'].get('floor_area', 80.0)
lighting_heat_gain = lighting_power_density * floor_area * lighting_heat_factor
st.write(f"Lighting heat factor: {lighting_heat_factor}")
st.write(f"Total lighting heat gain: {lighting_heat_gain:.2f} W")
# Save lighting data
st.session_state.heating_form_data['internal_loads']['lighting'] = {
'type': lighting_type,
'power_density': lighting_power_density,
'heat_factor': lighting_heat_factor,
'total_heat_gain': lighting_heat_gain
}
# Equipment section
st.write("#### Equipment")
st.write("Select the equipment present in your space:")
col1, col2 = st.columns(2)
with col1:
has_kitchen = st.checkbox(
"Kitchen Appliances",
value=st.session_state.heating_form_data['internal_loads']['appliances'].get('kitchen', True),
help="Refrigerator, stove, microwave, etc.",
key="has_kitchen_heating"
)
has_living_room = st.checkbox(
"Living Room Equipment",
value=st.session_state.heating_form_data['internal_loads']['appliances'].get('living_room', True),
help="TV, audio equipment, etc.",
key="has_living_room_heating"
)
with col2:
has_bedroom = st.checkbox(
"Bedroom Equipment",
value=st.session_state.heating_form_data['internal_loads']['appliances'].get('bedroom', True),
help="TV, chargers, etc.",
key="has_bedroom_heating"
)
has_office = st.checkbox(
"Office Equipment",
value=st.session_state.heating_form_data['internal_loads']['appliances'].get('office', False),
help="Computer, printer, etc.",
key="has_office_heating"
)
# Calculate equipment heat gain
equipment_watts = 0
if has_kitchen:
equipment_watts += 1000 # Kitchen appliances
if has_living_room:
equipment_watts += 300 # Living room equipment
if has_bedroom:
equipment_watts += 150 # Bedroom equipment
if has_office:
equipment_watts += 450 # Office equipment
st.write(f"Total equipment heat gain: {equipment_watts} W")
# Save appliances data
st.session_state.heating_form_data['internal_loads']['appliances'] = {
'kitchen': has_kitchen,
'living_room': has_living_room,
'bedroom': has_bedroom,
'office': has_office,
'total_heat_gain': equipment_watts
}
# Calculate total internal heat gain
total_internal_gain = (
st.session_state.heating_form_data['internal_loads']['occupants']['total_heat_gain'] +
st.session_state.heating_form_data['internal_loads']['lighting']['total_heat_gain'] +
st.session_state.heating_form_data['internal_loads']['appliances']['total_heat_gain']
)
st.write(f"Total internal heat gain: {total_internal_gain:.2f} W")
# Save total internal gain
st.session_state.heating_form_data['internal_loads']['total_heat_gain'] = total_internal_gain
col1, col2 = st.columns(2)
with col1:
ventilation_type = st.selectbox(
"Ventilation Type",
options=["natural", "mechanical", "mixed"],
format_func=lambda x: x.capitalize(),
index=["natural", "mechanical", "mixed"].index(st.session_state.heating_form_data['ventilation']['ventilation'].get('type', 'natural')),
key="ventilation_type_heating"
)
with col2:
ventilation_ach = st.number_input(
"Ventilation Rate (air changes per hour)",
value=float(st.session_state.heating_form_data['ventilation']['ventilation'].get('air_changes', 0.0)),
min_value=0.0,
max_value=5.0,
step=0.1,
help="Typical values: 0.35-1.0 ACH for residential buildings",
key="ventilation_ach_heating"
)
# Calculate ventilation heat loss
ventilation_heat_loss = 0.33 * volume * ventilation_ach * temp_diff
st.write(f"Ventilation heat loss: {ventilation_heat_loss:.2f} W")
# Save ventilation data
st.session_state.heating_form_data['ventilation']['ventilation'] = {
'type': ventilation_type,
'air_changes': ventilation_ach,
'volume': volume,
'temp_diff': temp_diff,
'heat_loss': ventilation_heat_loss
}
# Calculate total ventilation and infiltration heat loss
total_ventilation_loss = infiltration_heat_loss + ventilation_heat_loss
st.info(f"Total Ventilation & Infiltration Heat Loss: {total_ventilation_loss:.2f} W")
# Save total ventilation loss
st.session_state.heating_form_data['ventilation']['total_loss'] = total_ventilation_loss
# Validate inputs
warnings = []
# Check if infiltration rate is reasonable
if infiltration_ach < 0.3:
warnings.append(ValidationWarning(
"Low infiltration rate",
"Infiltration rate below 0.3 ACH is unusually low for most buildings."
))
elif infiltration_ach > 1.5:
warnings.append(ValidationWarning(
"High infiltration rate",
"Infiltration rate above 1.5 ACH indicates a leaky building envelope."
))
# Check if ventilation rate is reasonable
if ventilation_ach > 0 and ventilation_ach < 0.35:
warnings.append(ValidationWarning(
"Low ventilation rate",
"Ventilation rate below 0.35 ACH may not provide adequate fresh air."
))
elif ventilation_ach > 2.0:
warnings.append(ValidationWarning(
"High ventilation rate",
"Ventilation rate above 2.0 ACH is unusually high for residential buildings."
))
# Save warnings to session state
st.session_state.heating_warnings['ventilation'] = warnings
# Display warnings if any
if warnings:
st.warning("Please review the following warnings:")
for warning in warnings:
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
st.write(f" Suggestion: {warning.suggestion}")
# Mark this step as completed if there are no critical warnings
st.session_state.heating_completed['ventilation'] = not any(w.is_critical for w in warnings)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col1:
prev_button = st.button("← Back: Windows & Doors", key="heating_ventilation_prev")
if prev_button:
st.session_state.heating_active_tab = "windows"
st.experimental_rerun()
with col2:
next_button = st.button("Next: Occupancy →", key="heating_ventilation_next")
if next_button:
st.session_state.heating_active_tab = "occupancy"
st.experimental_rerun()
def occupancy_form(ref_data):
"""
Form for occupancy information.
Args:
ref_data: Reference data object
"""
st.subheader("Occupancy Information")
st.write("Enter information about occupancy patterns and heating degree days.")
# Get location from building info
location = st.session_state.heating_form_data['building_info'].get('location', 'sydney')
location_name = st.session_state.heating_form_data['building_info'].get('location_name', 'Sydney')
# Initialize occupancy data if not already in session state
if 'occupancy_type' not in st.session_state.heating_form_data['occupancy']:
st.session_state.heating_form_data['occupancy']['occupancy_type'] = 'continuous'
if 'heating_degree_days' not in st.session_state.heating_form_data['occupancy']:
# Get default HDD from reference data
calculator = HeatingLoadCalculator()
default_hdd = calculator.get_heating_degree_days(location)
st.session_state.heating_form_data['occupancy']['heating_degree_days'] = default_hdd
# Occupancy section
st.write("### Occupancy Pattern")
# Get occupancy options from reference data
occupancy_options = {occ_id: occ_data['name'] for occ_id, occ_data in ref_data.occupancy_factors.items()}
occupancy_type = st.selectbox(
"Occupancy Type",
options=list(occupancy_options.keys()),
format_func=lambda x: occupancy_options[x],
index=list(occupancy_options.keys()).index(st.session_state.heating_form_data['occupancy'].get('occupancy_type', 'continuous')) if st.session_state.heating_form_data['occupancy'].get('occupancy_type') in occupancy_options else 0,
help="Select the occupancy pattern that best describes how the building is used"
)
# Get occupancy factor
occupancy_data = ref_data.get_occupancy_factor(occupancy_type)
occupancy_factor = occupancy_data['factor']
st.write(f"Occupancy correction factor: {occupancy_factor}")
st.write(f"Description: {occupancy_data['description']}")
# Save occupancy data
st.session_state.heating_form_data['occupancy']['occupancy_type'] = occupancy_type
st.session_state.heating_form_data['occupancy']['occupancy_factor'] = occupancy_factor
# Heating degree days section
st.write("### Heating Degree Days")
st.write("Heating degree days are used to estimate annual heating energy requirements.")
col1, col2 = st.columns(2)
with col1:
base_temp = st.selectbox(
"Base Temperature",
options=[18, 15.5, 12],
index=[18, 15.5, 12].index(st.session_state.heating_form_data['occupancy'].get('base_temp', 18)) if st.session_state.heating_form_data['occupancy'].get('base_temp') in [18, 15.5, 12] else 0,
help="Base temperature for heating degree days calculation"
)
with col2:
# Get default HDD from reference data
calculator = HeatingLoadCalculator()
default_hdd = calculator.get_heating_degree_days(location, base_temp)
heating_degree_days = st.number_input(
"Heating Degree Days",
value=float(st.session_state.heating_form_data['occupancy'].get('heating_degree_days', default_hdd)),
min_value=0.0,
step=10.0,
help=f"Default value for {location_name} at base {base_temp}°C: {default_hdd}"
)
st.write(f"Heating degree days represent the sum of daily temperature differences between the base temperature and the average daily temperature when it falls below the base temperature.")
# Save heating degree days data
st.session_state.heating_form_data['occupancy']['base_temp'] = base_temp
st.session_state.heating_form_data['occupancy']['heating_degree_days'] = heating_degree_days
# Validate inputs
warnings = []
# Check if heating degree days are reasonable
if heating_degree_days == 0:
warnings.append(ValidationWarning(
"Zero heating degree days",
"With zero heating degree days, annual heating energy will be zero."
))
elif heating_degree_days < 100 and base_temp == 18:
warnings.append(ValidationWarning(
"Very low heating degree days",
f"Heating degree days below 100 at base {base_temp}°C is unusually low for most locations."
))
elif heating_degree_days > 3000:
warnings.append(ValidationWarning(
"Very high heating degree days",
"Heating degree days above 3000 is unusually high for most locations."
))
# Save warnings to session state
st.session_state.heating_warnings['occupancy'] = warnings
# Display warnings if any
if warnings:
st.warning("Please review the following warnings:")
for warning in warnings:
st.write(f"- {warning.message}" + (" (Critical)" if warning.is_critical else ""))
st.write(f" Suggestion: {warning.suggestion}")
# Mark this step as completed if there are no critical warnings
st.session_state.heating_completed['occupancy'] = not any(w.is_critical for w in warnings)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col1:
prev_button = st.button("← Back: Ventilation", key="heating_occupancy_prev")
if prev_button:
st.session_state.heating_active_tab = "ventilation"
st.experimental_rerun()
with col2:
calculate_button = st.button("Calculate Results →", key="heating_occupancy_calculate")
if calculate_button:
# Calculate heating load
calculate_heating_load()
st.session_state.heating_active_tab = "results"
st.experimental_rerun()
def calculate_heating_load():
"""Calculate heating load based on input data."""
# Create calculator instance
calculator = HeatingLoadCalculator()
# Get form data
form_data = st.session_state.heating_form_data
# Prepare building components for calculation
building_components = []
# Add walls
for wall in form_data['building_envelope'].get('walls', []):
building_components.append({
'name': wall['name'],
'area': wall['area'],
'u_value': wall['u_value'],
'temp_diff': wall['temp_diff']
})
# Add roof
roof = form_data['building_envelope'].get('roof', {})
if roof:
building_components.append({
'name': 'Roof',
'area': roof['area'],
'u_value': roof['u_value'],
'temp_diff': roof['temp_diff']
})
# Add floor
floor = form_data['building_envelope'].get('floor', {})
if floor:
building_components.append({
'name': 'Floor',
'area': floor['area'],
'u_value': floor['u_value'],
'temp_diff': floor['temp_diff']
})
# Add windows
for window in form_data['windows'].get('windows', []):
building_components.append({
'name': window['name'],
'area': window['area'],
'u_value': window['u_value'],
'temp_diff': window['temp_diff']
})
# Add doors
for door in form_data['windows'].get('doors', []):
building_components.append({
'name': door['name'],
'area': door['area'],
'u_value': door['u_value'],
'temp_diff': door['temp_diff']
})
# Prepare infiltration data
infiltration = form_data['ventilation'].get('infiltration', {})
ventilation = form_data['ventilation'].get('ventilation', {})
infiltration_data = {
'volume': infiltration.get('volume', 0),
'air_changes': infiltration.get('air_changes', 0) + ventilation.get('air_changes', 0),
'temp_diff': infiltration.get('temp_diff', 0)
}
# Prepare internal loads data
internal_loads = None
if 'internal_loads' in form_data:
internal_loads = {
'num_people': form_data['internal_loads']['occupants'].get('count', 0),
'has_kitchen': form_data['internal_loads']['appliances'].get('kitchen', False),
'equipment_watts': form_data['internal_loads']['appliances'].get('total_heat_gain', 0)
}
# Calculate heating load
results = calculator.calculate_total_heating_load(
building_components=building_components,
infiltration=infiltration_data,
internal_gains=internal_loads
)
# Calculate annual heating requirement
location = form_data['building_info'].get('location', 'sydney')
occupancy_type = form_data['occupancy'].get('occupancy_type', 'continuous')
base_temp = form_data['occupancy'].get('base_temp', 18)
annual_results = calculator.calculate_annual_heating_requirement(
results['total_load'],
location,
occupancy_type,
base_temp
)
# Combine results
combined_results = {**results, **annual_results}
# Save results to session state
st.session_state.heating_results = combined_results
# Add timestamp
st.session_state.heating_results['timestamp'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Add building info
st.session_state.heating_results['building_info'] = form_data['building_info']
return combined_results
def results_page():
"""Display calculation results."""
st.subheader("Heating Load Calculation Results")
# Check if results are available
if not st.session_state.heating_results:
st.warning("No calculation results available. Please complete the input forms and calculate results.")
return
# Get results
results = st.session_state.heating_results
# Display summary
st.write("### Summary")
col1, col2 = st.columns(2)
with col1:
st.metric("Total Heating Load", f"{results['total_load']:.2f} W")
# Convert to kW
total_load_kw = results['total_load'] / 1000
st.metric("Total Heating Load", f"{total_load_kw:.2f} kW")
# Annual heating energy
st.metric("Annual Heating Energy", f"{results['annual_energy_kwh']:.2f} kWh")
with col2:
# Calculate heating load per area
floor_area = results['building_info'].get('floor_area', 80.0)
heating_load_per_area = results['total_load'] / floor_area
st.metric("Heating Load per Area", f"{heating_load_per_area:.2f} W/m²")
# Annual heating energy per area
annual_energy_per_area = results['annual_energy_kwh'] / floor_area
st.metric("Annual Heating Energy per Area", f"{annual_energy_per_area:.2f} kWh/m²")
# Equipment sizing recommendation
# Add 10% safety factor
recommended_size = total_load_kw * 1.1
st.metric("Recommended Equipment Size", f"{recommended_size:.2f} kW")
# Display load breakdown
st.write("### Load Breakdown")
# Prepare data for pie chart
component_losses = results['component_losses']
# Create pie chart for component losses
fig = px.pie(
values=list(component_losses.values()),
names=list(component_losses.keys()),
title="Heating Load Components",
color_discrete_sequence=px.colors.sequential.Viridis,
hole=0.4, # Create a donut chart for better readability
labels={'label': 'Component', 'value': 'Heat Loss (W)'}
)
# Improve layout and formatting
fig.update_traces(
textposition='inside',
textinfo='percent+label',
hoverinfo='label+percent+value',
marker=dict(line=dict(color='#FFFFFF', width=2))
)
# Improve layout
fig.update_layout(
legend_title_text='Building Components',
font=dict(size=14),
title_font=dict(size=18),
title_x=0.5, # Center the title
margin=dict(t=50, b=50, l=50, r=50)
)
st.plotly_chart(fig)
# Display load components in a table
load_components = {
'Conduction (Building Envelope)': results['total_conduction_loss'] - results.get('infiltration_loss', 0),
'Infiltration & Ventilation': results.get('infiltration_loss', 0)
}
# Add internal gains and solar gains if available
if 'internal_gain' in results and results['internal_gain'] > 0:
load_components['Internal Gains (reduction)'] = -results['internal_gain']
if 'wall_solar_gain' in results and results['wall_solar_gain'] > 0:
load_components['Solar Gains (reduction)'] = -results['wall_solar_gain']
load_df = pd.DataFrame({
'Component': list(load_components.keys()),
'Load (W)': list(load_components.values()),
'Percentage (%)': [abs(value) / results['total_load'] * 100 for value in load_components.values()]
})
st.dataframe(load_df.style.format({
'Load (W)': '{:.2f}',
'Percentage (%)': '{:.2f}'
}))
# Display detailed results
st.write("### Detailed Results")
# Create tabs for different result sections
tabs = st.tabs([
"Building Components",
"Ventilation",
"Annual Energy"
])
with tabs[0]:
st.subheader("Building Component Heat Losses")
# Create dataframe from component losses
components_data = []
for name, loss in component_losses.items():
# Find the component in the original data to get area and U-value
component = None
for comp in st.session_state.heating_form_data['building_envelope'].get('walls', []):
if comp['name'] == name:
component = comp
break
if name == 'Roof':
component = st.session_state.heating_form_data['building_envelope'].get('roof', {})
elif name == 'Floor':
component = st.session_state.heating_form_data['building_envelope'].get('floor', {})
# Check windows and doors
if not component:
for window in st.session_state.heating_form_data['windows'].get('windows', []):
if window['name'] == name:
component = window
break
if not component:
for door in st.session_state.heating_form_data['windows'].get('doors', []):
if door['name'] == name:
component = door
break
if component:
components_data.append({
'Component': name,
'Area (m²)': component.get('area', 0),
'U-Value (W/m²°C)': component.get('u_value', 0),
'Temperature Difference (°C)': component.get('temp_diff', 0),
'Heat Loss (W)': loss
})
else:
components_data.append({
'Component': name,
'Area (m²)': 0,
'U-Value (W/m²°C)': 0,
'Temperature Difference (°C)': 0,
'Heat Loss (W)': loss
})
# Create dataframe
components_df = pd.DataFrame(components_data)
# Display table
st.dataframe(components_df.style.format({
'Area (m²)': '{:.2f}',
'U-Value (W/m²°C)': '{:.2f}',
'Temperature Difference (°C)': '{:.2f}',
'Heat Loss (W)': '{:.2f}'
}))
# Create bar chart
fig = px.bar(
components_df,
x='Component',
y='Heat Loss (W)',
title="Heat Loss by Building Component",
color='Component',
color_discrete_sequence=px.colors.sequential.Viridis,
text='Heat Loss (W)'
)
# Improve layout and formatting
fig.update_traces(
texttemplate='%{text:.1f} W',
textposition='outside',
hovertemplate='<b>%{x}</b><br>Heat Loss: %{y:.1f} W<extra></extra>'
)
# Improve layout
fig.update_layout(
xaxis_title="Building Component",
yaxis_title="Heat Loss (W)",
font=dict(size=14),
title_font=dict(size=18),
title_x=0.5, # Center the title
margin=dict(t=50, b=50, l=50, r=50),
xaxis={'categoryorder':'total descending'} # Sort by highest heat loss
)
st.plotly_chart(fig)
with tabs[1]:
st.subheader("Ventilation & Infiltration Heat Losses")
# Get ventilation data
ventilation_data = st.session_state.heating_form_data['ventilation']
# Create dataframe
ventilation_df = pd.DataFrame([
{
'Source': 'Infiltration',
'Air Changes per Hour': ventilation_data['infiltration']['air_changes'],
'Volume (m³)': ventilation_data['infiltration']['volume'],
'Temperature Difference (°C)': ventilation_data['infiltration']['temp_diff'],
'Heat Loss (W)': ventilation_data['infiltration']['heat_loss']
},
{
'Source': 'Ventilation',
'Air Changes per Hour': ventilation_data['ventilation']['air_changes'],
'Volume (m³)': ventilation_data['ventilation']['volume'],
'Temperature Difference (°C)': ventilation_data['ventilation']['temp_diff'],
'Heat Loss (W)': ventilation_data['ventilation']['heat_loss']
}
])
# Display table
st.dataframe(ventilation_df.style.format({
'Air Changes per Hour': '{:.2f}',
'Volume (m³)': '{:.2f}',
'Temperature Difference (°C)': '{:.2f}',
'Heat Loss (W)': '{:.2f}'
}))
# Create bar chart
fig = px.bar(
ventilation_df,
x='Source',
y='Heat Loss (W)',
title="Ventilation & Infiltration Heat Losses",
color='Source',
color_discrete_sequence=px.colors.sequential.Plasma,
text='Heat Loss (W)'
)
# Improve layout and formatting
fig.update_traces(
texttemplate='%{text:.1f} W',
textposition='outside',
hovertemplate='<b>%{x}</b><br>Heat Loss: %{y:.1f} W<br>Air Changes: %{customdata[0]:.2f} ACH<extra></extra>'
)
# Add custom data for hover
fig.update_traces(customdata=ventilation_df[['Air Changes per Hour']])
# Improve layout
fig.update_layout(
xaxis_title="Ventilation Source",
yaxis_title="Heat Loss (W)",
font=dict(size=14),
title_font=dict(size=18),
title_x=0.5, # Center the title
margin=dict(t=50, b=50, l=50, r=50)
)
st.plotly_chart(fig)
with tabs[2]:
st.subheader("Annual Heating Energy")
# Get occupancy data
occupancy_data = st.session_state.heating_form_data['occupancy']
# Create dataframe
annual_data = pd.DataFrame([
{
'Parameter': 'Heating Degree Days',
'Value': results['heating_degree_days'],
'Unit': 'HDD'
},
{
'Parameter': 'Base Temperature',
'Value': occupancy_data['base_temp'],
'Unit': '°C'
},
{
'Parameter': 'Occupancy Type',
'Value': occupancy_data['occupancy_type'].capitalize(),
'Unit': ''
},
{
'Parameter': 'Correction Factor',
'Value': results['correction_factor'],
'Unit': ''
},
{
'Parameter': 'Annual Heating Energy',
'Value': results['annual_energy_kwh'],
'Unit': 'kWh'
},
{
'Parameter': 'Annual Heating Energy',
'Value': results['annual_energy_mj'],
'Unit': 'MJ'
}
])
# Display table
st.dataframe(annual_data.style.format({
'Value': lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else str(x)
}))
# Create bar chart for monthly distribution (estimated)
# This is a simplified distribution based on heating degree days
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
# Get location
location = st.session_state.heating_form_data['building_info'].get('location', 'sydney')
# Simplified monthly distribution factors based on hemisphere
# Southern hemisphere: winter is June-August
# Northern hemisphere: winter is December-February
southern_hemisphere = ['sydney', 'melbourne', 'brisbane', 'perth', 'adelaide', 'hobart', 'darwin', 'canberra', 'mildura']
if location.lower() in southern_hemisphere:
# Southern hemisphere distribution
monthly_factors = [0.02, 0.01, 0.03, 0.08, 0.12, 0.16, 0.18, 0.16, 0.12, 0.08, 0.03, 0.01]
else:
# Northern hemisphere distribution
monthly_factors = [0.18, 0.16, 0.12, 0.08, 0.03, 0.01, 0.01, 0.01, 0.03, 0.08, 0.12, 0.17]
# Calculate monthly energy
monthly_energy = [results['annual_energy_kwh'] * factor for factor in monthly_factors]
# Create dataframe
monthly_df = pd.DataFrame({
'Month': months,
'Energy (kWh)': monthly_energy
})
# Create bar chart
fig = px.bar(
monthly_df,
x='Month',
y='Energy (kWh)',
title="Estimated Monthly Heating Energy Distribution",
color_discrete_sequence=['indianred']
)
st.plotly_chart(fig)
# Export options
st.write("### Export Options")
col1, col2 = st.columns(2)
with col1:
if st.button("Export Results as CSV", key="export_csv_heating"):
# Create a CSV file with results
csv_data = export_data(st.session_state.heating_form_data, st.session_state.heating_results, format='csv')
# Provide download link
st.download_button(
label="Download CSV",
data=csv_data,
file_name=f"heating_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv"
)
with col2:
if st.button("Export Results as JSON", key="export_json_heating"):
# Create a JSON file with results
json_data = export_data(st.session_state.heating_form_data, st.session_state.heating_results, format='json')
# Provide download link
st.download_button(
label="Download JSON",
data=json_data,
file_name=f"heating_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json"
)
# Navigation buttons
col1, col2 = st.columns([1, 1])
with col1:
prev_button = st.button("← Back: Occupancy", key="heating_results_prev")
if prev_button:
st.session_state.heating_active_tab = "occupancy"
st.experimental_rerun()
with col2:
recalculate_button = st.button("Recalculate", key="heating_results_recalculate")
if recalculate_button:
# Recalculate heating load
calculate_heating_load()
st.experimental_rerun()
def heating_calculator():
"""Main function for the heating load calculator page."""
st.title("Heating Load Calculator")
# Initialize reference data
ref_data = ReferenceData()
# Initialize session state
load_session_state()
# Initialize active tab if not already set
if 'heating_active_tab' not in st.session_state:
st.session_state.heating_active_tab = "building_info"
# Create tabs for different steps
tabs = st.tabs([
"1. Building Information",
"2. Building Envelope",
"3. Windows & Doors",
"4. Ventilation",
"5. Occupancy",
"6. Results"
])
# Add direct navigation buttons at the top
st.write("### Navigation")
st.write("Click on any button below to navigate directly to that section:")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("1. Building Information", key="direct_nav_heating_info"):
st.session_state.heating_active_tab = "building_info"
st.experimental_rerun()
if st.button("2. Building Envelope", key="direct_nav_heating_envelope"):
st.session_state.heating_active_tab = "building_envelope"
st.experimental_rerun()
with col2:
if st.button("3. Windows & Doors", key="direct_nav_heating_windows"):
st.session_state.heating_active_tab = "windows"
st.experimental_rerun()
if st.button("4. Ventilation", key="direct_nav_heating_ventilation"):
st.session_state.heating_active_tab = "ventilation"
st.experimental_rerun()
with col3:
if st.button("5. Occupancy", key="direct_nav_heating_occupancy"):
st.session_state.heating_active_tab = "occupancy"
st.experimental_rerun()
if st.button("6. Results", key="direct_nav_heating_results"):
# Only enable if all previous steps are completed
if all(st.session_state.heating_completed.values()):
st.session_state.heating_active_tab = "results"
st.experimental_rerun()
else:
st.warning("Please complete all previous steps before viewing results.")
# Display the active tab
with tabs[0]:
if st.session_state.heating_active_tab == "building_info":
building_info_form(ref_data)
with tabs[1]:
if st.session_state.heating_active_tab == "building_envelope":
building_envelope_form(ref_data)
with tabs[2]:
if st.session_state.heating_active_tab == "windows":
windows_form(ref_data)
with tabs[3]:
if st.session_state.heating_active_tab == "ventilation":
ventilation_form(ref_data)
with tabs[4]:
if st.session_state.heating_active_tab == "occupancy":
occupancy_form(ref_data)
with tabs[5]:
if st.session_state.heating_active_tab == "results":
results_page()
if __name__ == "__main__":
heating_calculator()