HVAC-03 / utils /psychrometric_visualization.py
mabuseif's picture
Upload 27 files
845939b verified
"""
Psychrometric visualization module for HVAC Load Calculator.
This module provides visualization tools for psychrometric processes.
"""
import streamlit as st
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from typing import Dict, List, Any, Optional, Tuple
import math
# Import psychrometrics module
from utils.psychrometrics import Psychrometrics
class PsychrometricVisualization:
"""Class for psychrometric visualization."""
def __init__(self):
"""Initialize psychrometric visualization."""
self.psychrometrics = Psychrometrics()
# Define temperature and humidity ratio ranges for chart
self.temp_min = -10
self.temp_max = 50
self.w_min = 0
self.w_max = 0.030
# Define standard atmospheric pressure
self.pressure = 101325 # Pa
def create_psychrometric_chart(self, points: Optional[List[Dict[str, Any]]] = None,
processes: Optional[List[Dict[str, Any]]] = None,
comfort_zone: Optional[Dict[str, Any]] = None) -> go.Figure:
"""
Create an interactive psychrometric chart.
Args:
points: List of points to plot on the chart
processes: List of processes to plot on the chart
comfort_zone: Dictionary with comfort zone parameters
Returns:
Plotly figure with psychrometric chart
"""
# Create figure
fig = go.Figure()
# Generate temperature and humidity ratio grids
temp_range = np.linspace(self.temp_min, self.temp_max, 100)
w_range = np.linspace(self.w_min, self.w_max, 100)
# Generate saturation curve
sat_temps = np.linspace(self.temp_min, self.temp_max, 100)
sat_w = [self.psychrometrics.humidity_ratio(t, 100, self.pressure) for t in sat_temps]
# Plot saturation curve
fig.add_trace(go.Scatter(
x=sat_temps,
y=sat_w,
mode="lines",
line=dict(color="blue", width=2),
name="Saturation Curve"
))
# Generate constant RH curves
rh_values = [10, 20, 30, 40, 50, 60, 70, 80, 90]
for rh in rh_values:
rh_temps = np.linspace(self.temp_min, self.temp_max, 50)
rh_w = [self.psychrometrics.humidity_ratio(t, rh, self.pressure) for t in rh_temps]
# Filter out values above saturation
valid_points = [(t, w) for t, w in zip(rh_temps, rh_w) if w <= self.psychrometrics.humidity_ratio(t, 100, self.pressure)]
if valid_points:
valid_temps, valid_w = zip(*valid_points)
fig.add_trace(go.Scatter(
x=valid_temps,
y=valid_w,
mode="lines",
line=dict(color="rgba(0, 0, 255, 0.3)", width=1, dash="dot"),
name=f"{rh}% RH",
hoverinfo="name"
))
# Generate constant wet-bulb temperature lines
wb_values = np.arange(0, 35, 5)
for wb in wb_values:
wb_temps = np.linspace(wb, self.temp_max, 50)
wb_points = []
for t in wb_temps:
# Binary search to find humidity ratio for this wet-bulb temperature
w_low = 0
w_high = self.psychrometrics.humidity_ratio(t, 100, self.pressure)
for _ in range(10): # 10 iterations should be enough for good precision
w_mid = (w_low + w_high) / 2
rh = self.psychrometrics.relative_humidity(t, w_mid, self.pressure)
t_wb_calc = self.psychrometrics.wet_bulb_temperature(t, rh, self.pressure)
if abs(t_wb_calc - wb) < 0.1:
wb_points.append((t, w_mid))
break
elif t_wb_calc < wb:
w_low = w_mid
else:
w_high = w_mid
if wb_points:
wb_temps, wb_w = zip(*wb_points)
fig.add_trace(go.Scatter(
x=wb_temps,
y=wb_w,
mode="lines",
line=dict(color="rgba(0, 128, 0, 0.3)", width=1, dash="dash"),
name=f"{wb}°C WB",
hoverinfo="name"
))
# Generate constant enthalpy lines
h_values = np.arange(0, 100, 10) * 1000 # kJ/kg to J/kg
for h in h_values:
h_temps = np.linspace(self.temp_min, self.temp_max, 50)
h_points = []
for t in h_temps:
# Calculate humidity ratio for this enthalpy
w = self.psychrometrics.find_humidity_ratio_for_enthalpy(t, h)
if 0 <= w <= self.psychrometrics.humidity_ratio(t, 100, self.pressure):
h_points.append((t, w))
if h_points:
h_temps, h_w = zip(*h_points)
fig.add_trace(go.Scatter(
x=h_temps,
y=h_w,
mode="lines",
line=dict(color="rgba(255, 0, 0, 0.3)", width=1, dash="dashdot"),
name=f"{h/1000:.0f} kJ/kg",
hoverinfo="name"
))
# Generate constant specific volume lines
v_values = [0.8, 0.85, 0.9, 0.95, 1.0, 1.05]
for v in v_values:
v_temps = np.linspace(self.temp_min, self.temp_max, 50)
v_points = []
for t in h_temps:
# Binary search to find humidity ratio for this specific volume
w_low = 0
w_high = self.psychrometrics.humidity_ratio(t, 100, self.pressure)
for _ in range(10): # 10 iterations should be enough for good precision
w_mid = (w_low + w_high) / 2
v_calc = self.psychrometrics.specific_volume(t, w_mid, self.pressure)
if abs(v_calc - v) < 0.01:
v_points.append((t, w_mid))
break
elif v_calc < v:
w_low = w_mid
else:
w_high = w_mid
if v_points:
v_temps, v_w = zip(*v_points)
fig.add_trace(go.Scatter(
x=v_temps,
y=v_w,
mode="lines",
line=dict(color="rgba(128, 0, 128, 0.3)", width=1, dash="longdash"),
name=f"{v:.2f} m³/kg",
hoverinfo="name"
))
# Add comfort zone if specified
if comfort_zone:
temp_min = comfort_zone.get("temp_min", 20)
temp_max = comfort_zone.get("temp_max", 26)
rh_min = comfort_zone.get("rh_min", 30)
rh_max = comfort_zone.get("rh_max", 60)
# Calculate humidity ratios at corners
w_bottom_left = self.psychrometrics.humidity_ratio(temp_min, rh_min, self.pressure)
w_bottom_right = self.psychrometrics.humidity_ratio(temp_max, rh_min, self.pressure)
w_top_right = self.psychrometrics.humidity_ratio(temp_max, rh_max, self.pressure)
w_top_left = self.psychrometrics.humidity_ratio(temp_min, rh_max, self.pressure)
# Add comfort zone as a filled polygon
fig.add_trace(go.Scatter(
x=[temp_min, temp_max, temp_max, temp_min, temp_min],
y=[w_bottom_left, w_bottom_right, w_top_right, w_top_left, w_bottom_left],
fill="toself",
fillcolor="rgba(0, 255, 0, 0.2)",
line=dict(color="green", width=2),
name="Comfort Zone"
))
# Add points if specified
if points:
for i, point in enumerate(points):
temp = point.get("temp", 0)
rh = point.get("rh", 0)
w = point.get("w", self.psychrometrics.humidity_ratio(temp, rh, self.pressure))
name = point.get("name", f"Point {i+1}")
color = point.get("color", "blue")
fig.add_trace(go.Scatter(
x=[temp],
y=[w],
mode="markers+text",
marker=dict(size=10, color=color),
text=[name],
textposition="top center",
name=name,
hovertemplate=(
f"<b>{name}</b><br>" +
"Temperature: %{x:.1f}°C<br>" +
"Humidity Ratio: %{y:.5f} kg/kg<br>" +
f"Relative Humidity: {rh:.1f}%<br>"
)
))
# Add processes if specified
if processes:
for i, process in enumerate(processes):
start_point = process.get("start", {})
end_point = process.get("end", {})
start_temp = start_point.get("temp", 0)
start_rh = start_point.get("rh", 0)
start_w = start_point.get("w", self.psychrometrics.humidity_ratio(start_temp, start_rh, self.pressure))
end_temp = end_point.get("temp", 0)
end_rh = end_point.get("rh", 0)
end_w = end_point.get("w", self.psychrometrics.humidity_ratio(end_temp, end_rh, self.pressure))
name = process.get("name", f"Process {i+1}")
color = process.get("color", "red")
fig.add_trace(go.Scatter(
x=[start_temp, end_temp],
y=[start_w, end_w],
mode="lines+markers",
line=dict(color=color, width=2, dash="solid"),
marker=dict(size=8, color=color),
name=name
))
# Add arrow to indicate direction
fig.add_annotation(
x=end_temp,
y=end_w,
ax=start_temp,
ay=start_w,
xref="x",
yref="y",
axref="x",
ayref="y",
showarrow=True,
arrowhead=2,
arrowsize=1,
arrowwidth=2,
arrowcolor=color
)
# Update layout
fig.update_layout(
title="Psychrometric Chart",
xaxis_title="Dry-Bulb Temperature (°C)",
yaxis_title="Humidity Ratio (kg/kg)",
xaxis=dict(
range=[self.temp_min, self.temp_max],
gridcolor="rgba(0, 0, 0, 0.1)",
showgrid=True
),
yaxis=dict(
range=[self.w_min, self.w_max],
gridcolor="rgba(0, 0, 0, 0.1)",
showgrid=True
),
height=700,
margin=dict(l=50, r=50, b=50, t=50),
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
),
hovermode="closest"
)
return fig
def create_process_visualization(self, process: Dict[str, Any]) -> go.Figure:
"""
Create a visualization of a psychrometric process.
Args:
process: Dictionary with process parameters
Returns:
Plotly figure with process visualization
"""
# Extract process parameters
start_point = process.get("start", {})
end_point = process.get("end", {})
start_temp = start_point.get("temp", 0)
start_rh = start_point.get("rh", 0)
end_temp = end_point.get("temp", 0)
end_rh = end_point.get("rh", 0)
# Calculate psychrometric properties
start_props = self.psychrometrics.moist_air_properties(start_temp, start_rh, self.pressure)
end_props = self.psychrometrics.moist_air_properties(end_temp, end_rh, self.pressure)
# Calculate process changes
delta_t = end_temp - start_temp
delta_w = end_props["humidity_ratio"] - start_props["humidity_ratio"]
delta_h = end_props["enthalpy"] - start_props["enthalpy"]
# Determine process type
process_type = "Unknown"
if abs(delta_w) < 0.0001: # Sensible heating/cooling
if delta_t > 0:
process_type = "Sensible Heating"
else:
process_type = "Sensible Cooling"
elif abs(delta_t) < 0.1: # Humidification/Dehumidification
if delta_w > 0:
process_type = "Humidification"
else:
process_type = "Dehumidification"
elif delta_t > 0 and delta_w > 0:
process_type = "Heating and Humidification"
elif delta_t < 0 and delta_w < 0:
process_type = "Cooling and Dehumidification"
elif delta_t > 0 and delta_w < 0:
process_type = "Heating and Dehumidification"
elif delta_t < 0 and delta_w > 0:
process_type = "Cooling and Humidification"
# Create figure
fig = go.Figure()
# Add process to psychrometric chart
chart_fig = self.create_psychrometric_chart(
points=[
{"temp": start_temp, "rh": start_rh, "name": "Start", "color": "blue"},
{"temp": end_temp, "rh": end_rh, "name": "End", "color": "red"}
],
processes=[
{"start": {"temp": start_temp, "rh": start_rh},
"end": {"temp": end_temp, "rh": end_rh},
"name": process_type,
"color": "green"}
]
)
# Create process diagram
# Create data for process parameters
params = [
"Dry-Bulb Temperature (°C)",
"Relative Humidity (%)",
"Humidity Ratio (g/kg)",
"Enthalpy (kJ/kg)",
"Wet-Bulb Temperature (°C)",
"Dew Point Temperature (°C)",
"Specific Volume (m³/kg)"
]
start_values = [
start_props["dry_bulb_temperature"],
start_props["relative_humidity"],
start_props["humidity_ratio"] * 1000, # Convert to g/kg
start_props["enthalpy"] / 1000, # Convert to kJ/kg
start_props["wet_bulb_temperature"],
start_props["dew_point_temperature"],
start_props["specific_volume"]
]
end_values = [
end_props["dry_bulb_temperature"],
end_props["relative_humidity"],
end_props["humidity_ratio"] * 1000, # Convert to g/kg
end_props["enthalpy"] / 1000, # Convert to kJ/kg
end_props["wet_bulb_temperature"],
end_props["dew_point_temperature"],
end_props["specific_volume"]
]
delta_values = [end - start for start, end in zip(start_values, end_values)]
# Create table
table_fig = go.Figure(data=[go.Table(
header=dict(
values=["Parameter", "Start", "End", "Change"],
fill_color="paleturquoise",
align="left",
font=dict(size=12)
),
cells=dict(
values=[
params,
[f"{val:.2f}" for val in start_values],
[f"{val:.2f}" for val in end_values],
[f"{val:.2f}" for val in delta_values]
],
fill_color="lavender",
align="left",
font=dict(size=11)
)
)])
table_fig.update_layout(
title=f"Process Parameters: {process_type}",
height=300,
margin=dict(l=0, r=0, b=0, t=30)
)
return chart_fig, table_fig
def display_psychrometric_visualization(self) -> None:
"""
Display psychrometric visualization in Streamlit.
"""
st.header("Psychrometric Visualization")
# Create tabs for different visualizations
tab1, tab2, tab3 = st.tabs([
"Interactive Psychrometric Chart",
"Process Visualization",
"Comfort Zone Analysis"
])
with tab1:
st.subheader("Interactive Psychrometric Chart")
# Add controls for points
st.write("Add points to the chart:")
col1, col2, col3 = st.columns(3)
with col1:
point1_temp = st.number_input("Point 1 Temperature (°C)", -10.0, 50.0, 20.0, key="point1_temp")
point1_rh = st.number_input("Point 1 RH (%)", 0.0, 100.0, 50.0, key="point1_rh")
with col2:
point2_temp = st.number_input("Point 2 Temperature (°C)", -10.0, 50.0, 30.0, key="point2_temp")
point2_rh = st.number_input("Point 2 RH (%)", 0.0, 100.0, 40.0, key="point2_rh")
with col3:
show_process = st.checkbox("Show Process Line", True, key="show_process")
process_name = st.text_input("Process Name", "Cooling Process", key="process_name")
# Create points
points = [
{"temp": point1_temp, "rh": point1_rh, "name": "Point 1", "color": "blue"},
{"temp": point2_temp, "rh": point2_rh, "name": "Point 2", "color": "red"}
]
# Create process if enabled
processes = []
if show_process:
processes.append({
"start": {"temp": point1_temp, "rh": point1_rh},
"end": {"temp": point2_temp, "rh": point2_rh},
"name": process_name,
"color": "green"
})
# Create and display chart
fig = self.create_psychrometric_chart(points=points, processes=processes)
st.plotly_chart(fig, use_container_width=True)
# Display point properties
col1, col2 = st.columns(2)
with col1:
st.subheader("Point 1 Properties")
props1 = self.psychrometrics.moist_air_properties(point1_temp, point1_rh, self.pressure)
st.write(f"Dry-Bulb Temperature: {props1['dry_bulb_temperature']:.2f} °C")
st.write(f"Relative Humidity: {props1['relative_humidity']:.2f} %")
st.write(f"Humidity Ratio: {props1['humidity_ratio']*1000:.2f} g/kg")
st.write(f"Enthalpy: {props1['enthalpy']/1000:.2f} kJ/kg")
st.write(f"Wet-Bulb Temperature: {props1['wet_bulb_temperature']:.2f} °C")
st.write(f"Dew Point Temperature: {props1['dew_point_temperature']:.2f} °C")
with col2:
st.subheader("Point 2 Properties")
props2 = self.psychrometrics.moist_air_properties(point2_temp, point2_rh, self.pressure)
st.write(f"Dry-Bulb Temperature: {props2['dry_bulb_temperature']:.2f} °C")
st.write(f"Relative Humidity: {props2['relative_humidity']:.2f} %")
st.write(f"Humidity Ratio: {props2['humidity_ratio']*1000:.2f} g/kg")
st.write(f"Enthalpy: {props2['enthalpy']/1000:.2f} kJ/kg")
st.write(f"Wet-Bulb Temperature: {props2['wet_bulb_temperature']:.2f} °C")
st.write(f"Dew Point Temperature: {props2['dew_point_temperature']:.2f} °C")
with tab2:
st.subheader("Process Visualization")
# Add controls for process
st.write("Define a psychrometric process:")
col1, col2 = st.columns(2)
with col1:
st.write("Starting Point")
start_temp = st.number_input("Temperature (°C)", -10.0, 50.0, 24.0, key="start_temp")
start_rh = st.number_input("RH (%)", 0.0, 100.0, 50.0, key="start_rh")
with col2:
st.write("Ending Point")
end_temp = st.number_input("Temperature (°C)", -10.0, 50.0, 14.0, key="end_temp")
end_rh = st.number_input("RH (%)", 0.0, 100.0, 90.0, key="end_rh")
# Create process
process = {
"start": {"temp": start_temp, "rh": start_rh},
"end": {"temp": end_temp, "rh": end_rh}
}
# Create and display process visualization
chart_fig, table_fig = self.create_process_visualization(process)
st.plotly_chart(chart_fig, use_container_width=True)
st.plotly_chart(table_fig, use_container_width=True)
# Calculate process energy requirements
start_props = self.psychrometrics.moist_air_properties(start_temp, start_rh, self.pressure)
end_props = self.psychrometrics.moist_air_properties(end_temp, end_rh, self.pressure)
delta_h = end_props["enthalpy"] - start_props["enthalpy"] # J/kg
st.subheader("Energy Calculations")
air_flow = st.number_input("Air Flow Rate (m³/s)", 0.1, 100.0, 1.0, key="air_flow")
# Calculate mass flow rate
density = start_props["density"] # kg/m³
mass_flow = air_flow * density # kg/s
# Calculate energy rate
energy_rate = mass_flow * delta_h # W
st.write(f"Air Density: {density:.2f} kg/m³")
st.write(f"Mass Flow Rate: {mass_flow:.2f} kg/s")
st.write(f"Enthalpy Change: {delta_h/1000:.2f} kJ/kg")
st.write(f"Energy Rate: {energy_rate/1000:.2f} kW")
with tab3:
st.subheader("Comfort Zone Analysis")
# Add controls for comfort zone
st.write("Define comfort zone parameters:")
col1, col2 = st.columns(2)
with col1:
temp_min = st.number_input("Minimum Temperature (°C)", 10.0, 30.0, 20.0, key="temp_min")
temp_max = st.number_input("Maximum Temperature (°C)", 10.0, 30.0, 26.0, key="temp_max")
with col2:
rh_min = st.number_input("Minimum RH (%)", 0.0, 100.0, 30.0, key="rh_min")
rh_max = st.number_input("Maximum RH (%)", 0.0, 100.0, 60.0, key="rh_max")
# Create comfort zone
comfort_zone = {
"temp_min": temp_min,
"temp_max": temp_max,
"rh_min": rh_min,
"rh_max": rh_max
}
# Add point to check if it's in comfort zone
st.write("Check if a point is within the comfort zone:")
col1, col2 = st.columns(2)
with col1:
check_temp = st.number_input("Temperature (°C)", -10.0, 50.0, 22.0, key="check_temp")
check_rh = st.number_input("RH (%)", 0.0, 100.0, 45.0, key="check_rh")
# Check if point is in comfort zone
in_comfort_zone = (
temp_min <= check_temp <= temp_max and
rh_min <= check_rh <= rh_max
)
with col2:
if in_comfort_zone:
st.success("✅ Point is within the comfort zone")
else:
st.error("❌ Point is outside the comfort zone")
# Calculate properties
check_props = self.psychrometrics.moist_air_properties(check_temp, check_rh, self.pressure)
st.write(f"Humidity Ratio: {check_props['humidity_ratio']*1000:.2f} g/kg")
st.write(f"Enthalpy: {check_props['enthalpy']/1000:.2f} kJ/kg")
st.write(f"Wet-Bulb Temperature: {check_props['wet_bulb_temperature']:.2f} °C")
# Create and display chart with comfort zone
fig = self.create_psychrometric_chart(
points=[{"temp": check_temp, "rh": check_rh, "name": "Test Point", "color": "purple"}],
comfort_zone=comfort_zone
)
st.plotly_chart(fig, use_container_width=True)
# Create a singleton instance
psychrometric_visualization = PsychrometricVisualization()
# Example usage
if __name__ == "__main__":
import streamlit as st
# Display psychrometric visualization
psychrometric_visualization.display_psychrometric_visualization()