HVAC-03 / utils /heating_load.py
mabuseif's picture
Update utils/heating_load.py
07f89c5 verified
"""
Enhanced heating load calculation module for HVAC Load Calculator.
Implements ASHRAE steady-state methods with simplified thermal lag for compatibility.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
ENHANCEMENTS:
- Added support for equipment and internal loads as heating sources
- Added support for custom U-values for materials
- Improved integration with enhanced component selection features (crack dimensions, drapery inputs)
- Ensured compatibility with winter design parameters from enhanced climate data
- Added support for skylights in heating load calculations
- Improved infiltration calculations using crack dimensions
"""
from typing import Dict, List, Any, Optional, Tuple
import math
import numpy as np
import logging
from enum import Enum
from dataclasses import dataclass
# Debug print to confirm file version
print("Loading heating_load.py with data.building_components import")
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Import utility modules
from utils.psychrometrics import Psychrometrics
from utils.heat_transfer import HeatTransferCalculations
# Import data modules
from data.building_components import Wall, Roof, Floor, Window, Door, Orientation, ComponentType, Skylight
class HeatingLoadCalculator:
"""Class for heating load calculations based on ASHRAE steady-state methods."""
def __init__(self, debug_mode: bool = False):
"""
Initialize heating load calculator with psychrometric and heat transfer calculations.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
Args:
debug_mode: Enable debug logging if True
"""
self.psychrometrics = Psychrometrics()
self.heat_transfer = HeatTransferCalculations()
self.safety_factor = 1.15 # 15% safety factor for design loads
self.debug_mode = debug_mode
if debug_mode:
logger.setLevel(logging.DEBUG)
def validate_inputs(self, components: Dict[str, List[Any]], outdoor_temp: float, indoor_temp: float) -> None:
"""
Validate input parameters for heating load calculations.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
Args:
components: Dictionary of building components
outdoor_temp: Outdoor design temperature in °C
indoor_temp: Indoor design temperature in °C
Raises:
ValueError: If inputs are invalid
"""
if not components:
raise ValueError("Building components dictionary cannot be empty")
for component_type, comp_list in components.items():
if not isinstance(comp_list, list):
raise ValueError(f"Components for {component_type} must be a list")
for comp in comp_list:
if not hasattr(comp, 'area') or comp.area <= 0:
raise ValueError(f"Invalid area for {component_type}: {comp.name}")
if not hasattr(comp, 'u_value') or comp.u_value <= 0:
raise ValueError(f"Invalid U-value for {component_type}: {comp.name}")
if not -50 <= outdoor_temp <= 60 or not -50 <= indoor_temp <= 60:
raise ValueError("Temperatures must be between -50°C and 60°C")
if indoor_temp - outdoor_temp < 1:
raise ValueError("Indoor temperature must be at least 1°C above outdoor temperature for heating")
def calculate_wall_heating_load(self, wall: Wall, outdoor_temp: float, indoor_temp: float) -> float:
"""
Calculate heating load for a wall, with simplified thermal lag.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.1.
Args:
wall: Wall component
outdoor_temp: Outdoor temperature in °C
indoor_temp: Indoor temperature in °C
Returns:
Heating load in W
"""
delta_t = indoor_temp - outdoor_temp
if delta_t <= 1:
return 0.0 # Skip calculation for small temperature differences
# Use default lag factor (no thermal mass adjustment)
lag_factor = 1.0
adjusted_delta_t = delta_t * lag_factor
load = self.heat_transfer.conduction_heat_transfer(wall.u_value, wall.area, adjusted_delta_t)
# ENHANCEMENT: Log detailed information in debug mode
if self.debug_mode:
logger.debug(f"Wall {wall.name} heating load: u_value={wall.u_value}, area={wall.area}, delta_t={adjusted_delta_t}, load={load:.2f} W")
return max(0, load)
def calculate_roof_heating_load(self, roof: Roof, outdoor_temp: float, indoor_temp: float) -> float:
"""
Calculate heating load for a roof, with simplified thermal lag.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.1.
Args:
roof: Roof component
outdoor_temp: Outdoor temperature in °C
indoor_temp: Indoor temperature in °C
Returns:
Heating load in W
"""
delta_t = indoor_temp - outdoor_temp
if delta_t <= 1:
return 0.0
lag_factor = 1.0
adjusted_delta_t = delta_t * lag_factor
load = self.heat_transfer.conduction_heat_transfer(roof.u_value, roof.area, adjusted_delta_t)
# ENHANCEMENT: Log detailed information in debug mode
if self.debug_mode:
logger.debug(f"Roof {roof.name} heating load: u_value={roof.u_value}, area={roof.area}, delta_t={adjusted_delta_t}, load={load:.2f} W")
return max(0, load)
def calculate_floor_heating_load(self, floor: Floor, ground_temp: float, indoor_temp: float) -> float:
"""
Calculate heating load for a floor, using dynamic F-factor for ground contact.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.3.
Args:
floor: Floor component
ground_temp: Ground temperature in °C
indoor_temp: Indoor temperature in °C
Returns:
Heating load in W
"""
delta_t = indoor_temp - ground_temp
if delta_t <= 1:
return 0.0
# ENHANCEMENT: Check if floor has ground_contact attribute
is_ground_contact = floor.ground_contact if hasattr(floor, 'ground_contact') else False
if is_ground_contact:
# Dynamic F-factor based on insulation
# ENHANCEMENT: Check if floor has insulated attribute
is_insulated = floor.insulated if hasattr(floor, 'insulated') else False
f_factor = 0.3 if is_insulated else 0.73 # W/m·K
# ENHANCEMENT: Check if floor has perimeter attribute
perimeter = floor.perimeter if hasattr(floor, 'perimeter') else (
floor.perimeter_length if hasattr(floor, 'perimeter_length') else
math.sqrt(4 * floor.area) # Estimate perimeter if not provided
)
load = f_factor * perimeter * delta_t
else:
load = self.heat_transfer.conduction_heat_transfer(floor.u_value, floor.area, delta_t)
if self.debug_mode:
logger.debug(f"Floor {floor.name} load: {load:.2f} W, Delta T: {delta_t:.2f}°C")
return max(0, load)
def calculate_window_heating_load(self, window: Window, outdoor_temp: float, indoor_temp: float, frame_type: Optional[str] = None) -> float:
"""
Calculate heating load for a window.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.1.
Args:
window: Window component
outdoor_temp: Outdoor temperature in °C
indoor_temp: Indoor temperature in °C
frame_type: Type of window frame (optional, e.g., 'Aluminum without Thermal Break')
Returns:
Heating load in W
"""
delta_t = indoor_temp - outdoor_temp
if delta_t <= 1:
return 0.0
# Initialize adjusted U-value
adjusted_u_value = window.u_value
# Adjust U-value based on frame_type if provided
frame_adjustments = {
'Aluminum without Thermal Break': 1.0,
'Aluminum with Thermal Break': 0.8,
'Vinyl/Fiberglass': 0.6,
'Wood/Vinyl-Clad Wood': 0.5,
'Insulated': 0.4
}
if frame_type:
adjustment = frame_adjustments.get(frame_type, 1.0)
adjusted_u_value *= adjustment
elif hasattr(window, 'frame_type') and window.frame_type:
# Fallback to window.frame_type if frame_type not provided
adjustment = frame_adjustments.get(window.frame_type, 1.0)
adjusted_u_value *= adjustment
# Adjust U-value if window has drapery
if hasattr(window, 'has_drapery') and window.has_drapery:
# Simple U-value adjustment for drapery (typically reduces U-value by 10-20%)
drapery_reduction = 0.15 # 15% reduction as a default
# More detailed adjustment if drapery properties are available
if hasattr(window, 'drapery_type'):
drapery_reductions = {
'None': 0.0,
'Sheer': 0.05,
'Light': 0.10,
'Medium': 0.15,
'Heavy': 0.20,
'Blackout': 0.25
}
drapery_reduction = drapery_reductions.get(window.drapery_type, 0.15)
adjusted_u_value *= (1 - drapery_reduction)
load = self.heat_transfer.conduction_heat_transfer(adjusted_u_value, window.area, delta_t)
# Log detailed information in debug mode
if self.debug_mode:
logger.debug(f"Window {window.name} heating load: u_value={adjusted_u_value}, area={window.area}, delta_t={delta_t}, frame_type={frame_type or window.frame_type}, load={load:.2f} W")
return max(0, load)
def calculate_door_heating_load(self, door: Door, outdoor_temp: float, indoor_temp: float) -> float:
"""
Calculate heating load for a door.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.1.
Args:
door: Door component
outdoor_temp: Outdoor temperature in °C
indoor_temp: Indoor temperature in °C
Returns:
Heating load in W
"""
delta_t = indoor_temp - outdoor_temp
if delta_t <= 1:
return 0.0
# ENHANCEMENT: Adjust U-value if door has weatherstripping
adjusted_u_value = door.u_value
if hasattr(door, 'has_weatherstripping') and door.has_weatherstripping:
# Simple U-value adjustment for weatherstripping (typically reduces U-value by 5-10%)
adjusted_u_value = door.u_value * 0.95 # 5% reduction
load = self.heat_transfer.conduction_heat_transfer(adjusted_u_value, door.area, delta_t)
# ENHANCEMENT: Log detailed information in debug mode
if self.debug_mode:
logger.debug(f"Door {door.name} heating load: u_value={adjusted_u_value}, area={door.area}, delta_t={delta_t}, load={load:.2f} W")
return max(0, load)
# ENHANCEMENT: Added skylight heating load calculation
def calculate_skylight_heating_load(self, skylight: Skylight, outdoor_temp: float, indoor_temp: float, frame_type: Optional[str] = None) -> float:
"""
Calculate heating load for a skylight.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.1.
Args:
skylight: Skylight component
outdoor_temp: Outdoor temperature in °C
indoor_temp: Indoor temperature in °C
frame_type: Type of skylight frame (optional, e.g., 'Aluminum without Thermal Break')
Returns:
Heating load in W
"""
delta_t = indoor_temp - outdoor_temp
if delta_t <= 1:
return 0.0
# Initialize adjusted U-value
adjusted_u_value = skylight.u_value
# Adjust U-value based on frame_type if provided
frame_adjustments = {
'Aluminum without Thermal Break': 1.0,
'Aluminum with Thermal Break': 0.8,
'Vinyl/Fiberglass': 0.6,
'Wood/Vinyl-Clad Wood': 0.5,
'Insulated': 0.4
}
if frame_type:
adjustment = frame_adjustments.get(frame_type, 1.0)
adjusted_u_value *= adjustment
elif hasattr(skylight, 'frame_type') and skylight.frame_type:
# Fallback to skylight.frame_type if frame_type not provided
adjustment = frame_adjustments.get(skylight.frame_type, 1.0)
adjusted_u_value *= adjustment
# Adjust U-value for drapery based on drapery_openness
if hasattr(skylight, 'drapery_openness') and skylight.drapery_openness != 'Open':
drapery_reduction = {
'Closed': 0.20,
'Semi-Open': 0.10,
'Open': 0.0
}.get(skylight.drapery_openness, 0.15)
adjusted_u_value *= (1 - drapery_reduction)
load = self.heat_transfer.conduction_heat_transfer(adjusted_u_value, skylight.area, delta_t)
# Log detailed information in debug mode
if self.debug_mode:
logger.debug(f"Skylight {skylight.name} heating load: u_value={adjusted_u_value}, area={skylight.area}, delta_t={delta_t}, frame_type={frame_type or skylight.frame_type}, load={load:.2f} W")
return max(0, load)
def calculate_infiltration_heating_load(self, indoor_conditions: Dict[str, float],
outdoor_conditions: Dict[str, float],
infiltration: Dict[str, float],
building_height: float,
p_atm: float = 101325) -> Tuple[float, float]:
"""
Calculate sensible and latent heating loads due to infiltration.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equations 18.5-18.6.
Args:
indoor_conditions: Indoor conditions (temperature, relative_humidity)
outdoor_conditions: Outdoor conditions (design_temperature, design_relative_humidity, wind_speed)
infiltration: Infiltration parameters (flow_rate, crack_length, height)
building_height: Building height in m
p_atm: Atmospheric pressure in Pa (default: 101325 Pa)
Returns:
Tuple of sensible and latent loads in W
"""
delta_t = indoor_conditions['temperature'] - outdoor_conditions['design_temperature']
if delta_t <= 1:
return 0.0, 0.0
# Calculate pressure differences
wind_pd = self.heat_transfer.wind_pressure_difference(outdoor_conditions['wind_speed'])
stack_pd = self.heat_transfer.stack_pressure_difference(
building_height,
indoor_conditions['temperature'] + 273.15,
outdoor_conditions['design_temperature'] + 273.15
)
total_pd = self.heat_transfer.combined_pressure_difference(wind_pd, stack_pd)
# ENHANCEMENT: Use crack dimensions if available for more accurate infiltration calculation
if 'crack_length' in infiltration and 'crack_width' in infiltration:
crack_length = infiltration['crack_length']
crack_width = infiltration['crack_width'] / 1000.0 # Convert from mm to m
flow_rate = self.heat_transfer.crack_method_infiltration(crack_length, crack_width, total_pd)
else:
# Use provided flow rate or default
flow_rate = infiltration.get('flow_rate', 0.05) # m³/s
# Calculate humidity ratio difference
w_indoor = self.psychrometrics.humidity_ratio(
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
w_outdoor = self.psychrometrics.humidity_ratio(
outdoor_conditions['design_temperature'],
outdoor_conditions['design_relative_humidity'],
p_atm
)
delta_w = max(0, w_indoor - w_outdoor)
# Calculate sensible and latent loads using indoor conditions for air properties
sensible_load = self.heat_transfer.infiltration_heat_transfer(
flow_rate, delta_t,
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
latent_load = self.heat_transfer.infiltration_latent_heat_transfer(
flow_rate, delta_w,
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
if self.debug_mode:
logger.debug(f"Infiltration flow rate: {flow_rate:.6f} m³/s, Sensible load: {sensible_load:.2f} W, Latent load: {latent_load:.2f} W")
return max(0, sensible_load), max(0, latent_load)
def calculate_ventilation_heating_load(self, ventilation: Dict[str, float],
indoor_conditions: Dict[str, float],
outdoor_conditions: Dict[str, float],
p_atm: float = 101325) -> Tuple[float, float]:
"""
Calculate sensible and latent heating loads due to ventilation.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equations 18.5-18.6.
Args:
ventilation: Ventilation parameters (flow_rate)
indoor_conditions: Indoor conditions (temperature, relative_humidity)
outdoor_conditions: Outdoor conditions (design_temperature, design_relative_humidity)
p_atm: Atmospheric pressure in Pa (default: 101325 Pa)
Returns:
Tuple of sensible and latent loads in W
"""
delta_t = indoor_conditions['temperature'] - outdoor_conditions['design_temperature']
if delta_t <= 1:
return 0.0, 0.0
flow_rate = ventilation['flow_rate']
w_indoor = self.psychrometrics.humidity_ratio(
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
w_outdoor = self.psychrometrics.humidity_ratio(
outdoor_conditions['design_temperature'],
outdoor_conditions['design_relative_humidity'],
p_atm
)
delta_w = max(0, w_indoor - w_outdoor)
# Calculate sensible and latent loads using indoor conditions for air properties
sensible_load = self.heat_transfer.infiltration_heat_transfer(
flow_rate, delta_t,
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
latent_load = self.heat_transfer.infiltration_latent_heat_transfer(
flow_rate, delta_w,
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
if self.debug_mode:
logger.debug(f"Ventilation flow rate: {flow_rate:.6f} m³/s, Sensible load: {sensible_load:.2f} W, Latent load: {latent_load:.2f} W")
return max(0, sensible_load), max(0, latent_load)
# ENHANCEMENT: Modified to include equipment and internal loads as heating sources
def calculate_internal_gains(self, internal_loads: Dict[str, Any], include_as_heating_source: bool = True) -> float:
"""
Calculate internal heat gains from people, lighting, and equipment.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.4.
Args:
internal_loads: Internal loads (people, lights, equipment)
include_as_heating_source: Whether to include internal gains as heating sources (positive value)
or as load reductions (negative value)
Returns:
Total internal gains in W (positive if heating source, negative if load reduction)
"""
total_gains = 0.0
# People gains
people = internal_loads.get('people', {})
if people.get('number', 0) > 0:
sensible_gain = people.get('sensible_gain', 70.0)
total_gains += people['number'] * sensible_gain
# Lighting gains
lights = internal_loads.get('lights', {})
if lights.get('power', 0) > 0:
total_gains += lights['power'] * lights.get('use_factor', 0.8)
# Equipment gains
equipment = internal_loads.get('equipment', {})
if equipment.get('power', 0) > 0:
total_gains += equipment['power'] * equipment.get('use_factor', 0.7)
# ENHANCEMENT: Return positive value if including as heating source, negative if reducing load
return total_gains if include_as_heating_source else -total_gains
def calculate_design_heating_load(self, building_components: Dict[str, List[Any]],
outdoor_conditions: Dict[str, float],
indoor_conditions: Dict[str, float],
internal_loads: Dict[str, Any],
p_atm: float = 101325,
include_internal_gains_as_heating_source: bool = False) -> Dict[str, float]:
"""
Calculate design heating loads for all components.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
Args:
building_components: Dictionary of building components
outdoor_conditions: Outdoor conditions (design_temperature, design_relative_humidity, ground_temperature, wind_speed)
indoor_conditions: Indoor conditions (temperature, relative_humidity)
internal_loads: Internal loads (people, lights, equipment, infiltration, ventilation)
p_atm: Atmospheric pressure in Pa (default: 101325 Pa)
include_internal_gains_as_heating_source: Whether to include internal gains as heating sources
Returns:
Dictionary of design loads in W
"""
try:
self.validate_inputs(building_components, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
except ValueError as e:
raise ValueError(f"Input validation failed: {str(e)}")
loads = {
'walls': 0.0,
'roofs': 0.0,
'floors': 0.0,
'windows': 0.0,
'doors': 0.0,
'skylights': 0.0, # ENHANCEMENT: Added skylights
'infiltration_sensible': 0.0,
'infiltration_latent': 0.0,
'ventilation_sensible': 0.0,
'ventilation_latent': 0.0,
'internal_gains': 0.0
}
# Calculate envelope loads
for wall in building_components.get('walls', []):
loads['walls'] += self.calculate_wall_heating_load(wall, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
for roof in building_components.get('roofs', []):
loads['roofs'] += self.calculate_roof_heating_load(roof, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
for floor in building_components.get('floors', []):
loads['floors'] += self.calculate_floor_heating_load(floor, outdoor_conditions['ground_temperature'], indoor_conditions['temperature'])
for window in building_components.get('windows', []):
loads['windows'] += self.calculate_window_heating_load(window, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
for door in building_components.get('doors', []):
loads['doors'] += self.calculate_door_heating_load(door, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
# ENHANCEMENT: Added skylights
for skylight in building_components.get('skylights', []):
loads['skylights'] += self.calculate_skylight_heating_load(skylight, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
# Calculate infiltration and ventilation loads
building_height = internal_loads.get('infiltration', {}).get('height', 3.0)
infiltration_sensible, infiltration_latent = self.calculate_infiltration_heating_load(
indoor_conditions, outdoor_conditions, internal_loads.get('infiltration', {}), building_height, p_atm
)
loads['infiltration_sensible'] = infiltration_sensible
loads['infiltration_latent'] = infiltration_latent
ventilation_sensible, ventilation_latent = self.calculate_ventilation_heating_load(
internal_loads.get('ventilation', {}), indoor_conditions, outdoor_conditions, p_atm
)
loads['ventilation_sensible'] = ventilation_sensible
loads['ventilation_latent'] = ventilation_latent
# ENHANCEMENT: Calculate internal gains (positive or negative based on parameter)
loads['internal_gains'] = self.calculate_internal_gains(
internal_loads, include_as_heating_source=include_internal_gains_as_heating_source
)
return loads
def calculate_heating_load_summary(self, design_loads: Dict[str, float]) -> Dict[str, float]:
"""
Summarize heating loads with safety factor.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
Args:
design_loads: Dictionary of design loads in W
Returns:
Summary dictionary with total, subtotal, and safety factor
"""
# ENHANCEMENT: Include skylights in subtotal
subtotal = sum(
load for key, load in design_loads.items()
if key not in ['internal_gains'] and load > 0
)
internal_gains = design_loads.get('internal_gains', 0)
# ENHANCEMENT: If internal gains are positive (heating source), add them to subtotal
# If negative (load reduction), subtract them from subtotal
if internal_gains >= 0:
adjusted_subtotal = subtotal + internal_gains
else:
adjusted_subtotal = subtotal + internal_gains # internal_gains is negative, so this is subtraction
total = max(0, adjusted_subtotal) * self.safety_factor
return {
'subtotal': subtotal,
'internal_gains': internal_gains,
'adjusted_subtotal': adjusted_subtotal,
'total': total,
'safety_factor': self.safety_factor
}
def calculate_heating_degree_days(self, base_temp: float, monthly_temps: Dict[str, float]) -> float:
"""
Calculate heating degree days for a year.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 14, Section 14.3.
Args:
base_temp: Base temperature for HDD calculation in °C
monthly_temps: Dictionary of monthly average temperatures
Returns:
Total heating degree days
"""
hdd = 0.0
days_per_month = {
'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30, 'May': 31, 'Jun': 30,
'Jul': 31, 'Aug': 31, 'Sep': 30, 'Oct': 31, 'Nov': 30, 'Dec': 31
}
for month, temp in monthly_temps.items():
if temp < base_temp:
hdd += (base_temp - temp) * days_per_month[month]
return hdd
def calculate_annual_heating_energy(self, design_loads: Dict[str, float],
monthly_temps: Dict[str, float],
indoor_temp: float,
operating_hours: str) -> float:
"""
Calculate annual heating energy consumption.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 14, Section 14.3.
Args:
design_loads: Dictionary of design loads in W
monthly_temps: Dictionary of monthly average temperatures
indoor_temp: Indoor design temperature in °C
operating_hours: Operating hours (e.g., '8:00-18:00')
Returns:
Annual heating energy in kWh
"""
base_temp = indoor_temp
hdd = self.calculate_heating_degree_days(base_temp, monthly_temps)
# Parse operating hours
start_hour, end_hour = map(lambda x: int(x.split(':')[0]), operating_hours.split('-'))
daily_hours = end_hour - start_hour
# Calculate design condition degree days
design_temp = min(monthly_temps.values())
design_delta_t = indoor_temp - design_temp
if design_delta_t <= 1:
return 0.0
total_load = self.calculate_heating_load_summary(design_loads)['total']
# Scale load by HDD and operating hours
annual_energy = (total_load / design_delta_t) * hdd * (daily_hours / 24) / 1000 # kWh
return max(0, annual_energy)
def calculate_monthly_heating_loads(self, building_components: Dict[str, List[Any]],
outdoor_conditions: Dict[str, float],
indoor_conditions: Dict[str, float],
internal_loads: Dict[str, Any],
monthly_temps: Dict[str, float],
p_atm: float = 101325,
include_internal_gains_as_heating_source: bool = False) -> Dict[str, float]:
"""
Calculate monthly heating loads.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
Args:
building_components: Dictionary of building components
outdoor_conditions: Outdoor conditions
indoor_conditions: Indoor conditions
internal_loads: Internal loads
monthly_temps: Dictionary of monthly average temperatures
p_atm: Atmospheric pressure in Pa (default: 101325 Pa)
include_internal_gains_as_heating_source: Whether to include internal gains as heating sources
Returns:
Dictionary of monthly heating loads in kW
"""
monthly_loads = {}
days_per_month = {
'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30, 'May': 31, 'Jun': 30,
'Jul': 31, 'Aug': 31, 'Sep': 30, 'Oct': 31, 'Nov': 30, 'Dec': 31
}
for month, temp in monthly_temps.items():
modified_outdoor = outdoor_conditions.copy()
modified_outdoor['design_temperature'] = temp
modified_outdoor['ground_temperature'] = temp
try:
design_loads = self.calculate_design_heating_load(
building_components, modified_outdoor, indoor_conditions, internal_loads, p_atm,
include_internal_gains_as_heating_source
)
summary = self.calculate_heating_load_summary(design_loads)
monthly_loads[month] = summary['total'] / 1000 # kW
except ValueError:
monthly_loads[month] = 0.0 # Skip invalid months
return monthly_loads
# Example usage
if __name__ == "__main__":
calculator = HeatingLoadCalculator(debug_mode=True)
# Example building components
components = {
'walls': [Wall(id="w1", name="North Wall", area=20.0, u_value=0.5, orientation=Orientation.NORTH)],
'roofs': [Roof(id="r1", name="Main Roof", area=100.0, u_value=0.3, orientation=Orientation.HORIZONTAL)],
'floors': [Floor(id="f1", name="Ground Floor", area=100.0, u_value=0.4, perimeter_length=40.0,
is_ground_contact=True, insulated=True, ground_temperature_c=10.0)],
'windows': [Window(id="win1", name="South Window", area=10.0, u_value=2.8, orientation=Orientation.SOUTH,
shgc=0.7, shading_coefficient=0.8)],
'doors': [Door(id="d1", name="Main Door", area=2.0, u_value=2.0, orientation=Orientation.NORTH)],
'skylights': [Skylight(id="s1", name="Main Skylight", area=5.0, u_value=3.0, orientation=Orientation.HORIZONTAL)]
}
outdoor_conditions = {
'design_temperature': -5.0,
'design_relative_humidity': 80.0,
'ground_temperature': 10.0,
'wind_speed': 4.0
}
indoor_conditions = {
'temperature': 21.0,
'relative_humidity': 40.0
}
internal_loads = {
'people': {'number': 10, 'sensible_gain': 70.0, 'operating_hours': '8:00-18:00'},
'lights': {'power': 1000.0, 'use_factor': 0.8, 'hours_operation': '8h'},
'equipment': {'power': 500.0, 'use_factor': 0.7, 'hours_operation': '8h'},
'infiltration': {'flow_rate': 0.05, 'height': 3.0, 'crack_length': 20.0, 'crack_width': 2.0},
'ventilation': {'flow_rate': 0.1},
'operating_hours': '8:00-18:00'
}
monthly_temps = {
'Jan': -5.0, 'Feb': -3.0, 'Mar': 2.0, 'Apr': 8.0, 'May': 14.0, 'Jun': 19.0,
'Jul': 22.0, 'Aug': 21.0, 'Sep': 16.0, 'Oct': 10.0, 'Nov': 4.0, 'Dec': -2.0
}
# Calculate design loads
design_loads = calculator.calculate_design_heating_load(
components, outdoor_conditions, indoor_conditions, internal_loads,
include_internal_gains_as_heating_source=True # ENHANCEMENT: Include internal gains as heating sources
)
summary = calculator.calculate_heating_load_summary(design_loads)
# Log results
logger.info(f"Total Heating Load: {summary['total']:.2f} W")
logger.info(f"Wall Load: {design_loads['walls']:.2f} W")
logger.info(f"Roof Load: {design_loads['roofs']:.2f} W")
logger.info(f"Floor Load: {design_loads['floors']:.2f} W")
logger.info(f"Window Load: {design_loads['windows']:.2f} W")
logger.info(f"Door Load: {design_loads['doors']:.2f} W")
logger.info(f"Skylight Load: {design_loads['skylights']:.2f} W") # ENHANCEMENT: Added skylight load
logger.info(f"Infiltration Sensible Load: {design_loads['infiltration_sensible']:.2f} W")
logger.info(f"Infiltration Latent Load: {design_loads['infiltration_latent']:.2f} W")
logger.info(f"Ventilation Sensible Load: {design_loads['ventilation_sensible']:.2f} W")
logger.info(f"Ventilation Latent Load: {design_loads['ventilation_latent']:.2f} W")
logger.info(f"Internal Gains: {design_loads['internal_gains']:.2f} W")
# Calculate annual energy
annual_energy = calculator.calculate_annual_heating_energy(
design_loads, monthly_temps, indoor_conditions['temperature'], internal_loads['operating_hours']
)
logger.info(f"Annual Heating Energy: {annual_energy:.2f} kWh")
# Calculate monthly loads
monthly_loads = calculator.calculate_monthly_heating_loads(
components, outdoor_conditions, indoor_conditions, internal_loads, monthly_temps,
include_internal_gains_as_heating_source=True # ENHANCEMENT: Include internal gains as heating sources
)
logger.info("Monthly Heating Loads (kW):")
for month, load in monthly_loads.items():
logger.info(f"{month}: {load:.2f} kW")