Turtle_image_classification / Classification_turtle.py
BugNo10's picture
Nombre Tortugas
8ba8f28 verified
import streamlit as st
import numpy as np
import tensorflow as tf
from PIL import Image
import tempfile
import base64
import re
import json
import random_responses
import time
import matplotlib.pyplot as plt
import pathlib
from streamlit_extras.app_logo import add_logo
import zipfile
#Decoracion de la app
st.set_page_config(page_title="Imagen Classification",
page_icon=":turtle:",
layout="wide",
initial_sidebar_state="auto",
menu_items=None)
markdown = """
La app realiza clasificacion de imagenes de las siguientes especies:
- *Gopherus flavomarginatus*
- *Kinosternon flavescens*
- *Terrapene coahuila*
- *Trachemys scripta*
\n
El uso del Chatbot se desplega al clasificar tu imagen
- Algunos ejemplos de pregunta:
- Descripcion de *Gopherus flavomarginatus*
- Distribucion de *Trachemys scripta*
\n
:grey-background[*Developed by Bruno Rodriguez*]
"""
st.sidebar.title("INFORMACION\nV.1.0")
st.sidebar.info(markdown)
logo = "./Clicker.jpg"
st.sidebar.image(logo)
st.markdown("<h1 style='text-align: center;'>ASK MY JORGE</h1>", unsafe_allow_html=True)
#Script main chatbot
def load_json(file):
with open(file) as bot_responses:
# print(f"Loaded '{file}' succesfully!")
return json.load(bot_responses)
responses_data = load_json("./bot.json")
def get_responses(input_string):
split_message = re.split(r'\s+|[,;?!.-]\s*', input_string.lower())
score_list = []
for response in responses_data:
response_score = 0
required_score = 0
required_words = response["required_words"]
if required_words:
for word in split_message:
if word in required_words:
required_score += 1
if response_score == len(required_words):
for word in split_message:
if word in response["user_input"]:
response_score += 1
score_list.append(response_score)
best_response = max(score_list)
response_index = score_list.index(best_response)
if input_string == "":
return "Que quieres saber sobre las tortugas :)"
if best_response != 0:
return responses_data[response_index]["bot_response"]
return random_responses.random_string()
#Tensorflow completo
##Clasificacion de imagen
#nombres de las tortugas
turtle_name = ['Gopherus flavomarginatus', 'Kinisternon flavescens', 'Terrapene coahuila', 'Trachemys scripta']
#carga del modelo
model = tf.keras.models.load_model('./turtle_model_V_1_8.keras')
###########################################
def classify_images(image_path):
input_image = tf.keras.utils.load_img(image_path, target_size= (224, 224))
input_image_array = tf.keras.utils.img_to_array(input_image)
input_image_exp_dim = tf.expand_dims(input_image_array, 0)
prediction = model.predict(input_image_exp_dim)
result = tf.nn.softmax(prediction[0])
outcome = f'Tu imagen es clasificada como: {turtle_name[np.argmax(result)]}'
# # #Grafico de la distribucion de probabilidades
class_turtle = ['Gopherus flavomarginatus',
'Kinosternon flavescens',
'Terrapene coahuila',
'Trachemys scripta']
fig, ax = plt.subplots(figsize=(3, 3))
y_pos = np.arange(len(class_turtle))
ax.barh(y_pos, prediction[0], align = 'center')
ax.set_yticks(y_pos)
ax.set_yticklabels(class_turtle)
ax.invert_yaxis()
ax.set_xlabel("Probality")
ax.set_title("Turtle Classification")
st.pyplot(fig)
return outcome
#Carga de la imagen a clasificar
file = st.file_uploader("Porfavor carga una imagen", type = ["jpg","png"])
if file is not None:
# Create a temporary file to save the uploaded image
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(file.getbuffer())
temp_file_path = temp_file.name
image = Image.open(temp_file_path)
st.image(image, width=200)
# Classify the image using the temporary file path
classification_result = classify_images(temp_file_path)
st.markdown(classification_result)
#auto play de cancion
#https://discuss.streamlit.io/t/how-to-play-an-audio-file-automatically-generated-using-text-to-speech-in-streamlit/33201/2
def autoplay_audio(file_path: str):
with open(file_path, "rb") as f:
data = f.read()
b64 = base64.b64encode(data).decode()
md = f"""
<audio controls autoplay="true">
<source src="data:audio/mp3;base64,{b64}" type="audio/mp3">
</audio>
"""
st.markdown(
md,
unsafe_allow_html=True,
)
#st.write("# Auto-playing Audio!")
autoplay_audio("./Finish.mp3")
#chatbot interface
# Interfaz de Streamlit
st.markdown('''### Chatbot de Tortugas 🐢 ''')
st.markdown("""
<style>
.stTextInput input[aria-label="Tú:"] {
background-color: #1db2cc;
color: #000000;
}
</style>
""", unsafe_allow_html=True)
# Caja de texto para entrada del usuario
user_input = st.text_input("Tú:", "")
# Mostrar la respuesta del bot
if user_input:
bot_response = get_responses(user_input)
st.text_area("BugNo:", bot_response, max_chars=None)
else:
#st.text("No has cargado imagen aún!")
st.text("")