Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
SYSTEM_PROMPT = "As an LLM, your primary function is to write engaging and informative scripts for TikTok videos based on facts about a given topic. Keep it concise and entertaining, but also make sure your scripts are accurate and factually correct."
|
3 |
+
TITLE = "TikTok FactFinder"
|
4 |
+
EXAMPLE_INPUT = "5 little-known facts about"
|
5 |
+
import gradio as gr
|
6 |
+
import os
|
7 |
+
import requests
|
8 |
+
|
9 |
+
zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta/"
|
10 |
+
|
11 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
+
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
|
13 |
+
|
14 |
+
def build_input_prompt(message, chatbot, system_prompt):
|
15 |
+
"""
|
16 |
+
Constructs the input prompt string from the chatbot interactions and the current message.
|
17 |
+
"""
|
18 |
+
input_prompt = "<|system|>\n" + system_prompt + "</s>\n<|user|>\n"
|
19 |
+
for interaction in chatbot:
|
20 |
+
input_prompt = input_prompt + str(interaction[0]) + "</s>\n<|assistant|>\n" + str(interaction[1]) + "\n</s>\n<|user|>\n"
|
21 |
+
|
22 |
+
input_prompt = input_prompt + str(message) + "</s>\n<|assistant|>"
|
23 |
+
return input_prompt
|
24 |
+
|
25 |
+
|
26 |
+
def post_request_beta(payload):
|
27 |
+
"""
|
28 |
+
Sends a POST request to the predefined Zephyr-7b-Beta URL and returns the JSON response.
|
29 |
+
"""
|
30 |
+
response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
|
31 |
+
response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
|
32 |
+
return response.json()
|
33 |
+
|
34 |
+
|
35 |
+
def predict_beta(message, chatbot=[], system_prompt=""):
|
36 |
+
input_prompt = build_input_prompt(message, chatbot, system_prompt)
|
37 |
+
data = {
|
38 |
+
"inputs": input_prompt
|
39 |
+
}
|
40 |
+
|
41 |
+
try:
|
42 |
+
response_data = post_request_beta(data)
|
43 |
+
json_obj = response_data[0]
|
44 |
+
|
45 |
+
if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
|
46 |
+
bot_message = json_obj['generated_text']
|
47 |
+
return bot_message
|
48 |
+
elif 'error' in json_obj:
|
49 |
+
raise gr.Error(json_obj['error'] + ' Please refresh and try again with smaller input prompt')
|
50 |
+
else:
|
51 |
+
warning_msg = f"Unexpected response: {json_obj}"
|
52 |
+
raise gr.Error(warning_msg)
|
53 |
+
except requests.HTTPError as e:
|
54 |
+
error_msg = f"Request failed with status code {e.response.status_code}"
|
55 |
+
raise gr.Error(error_msg)
|
56 |
+
except json.JSONDecodeError as e:
|
57 |
+
error_msg = f"Failed to decode response as JSON: {str(e)}"
|
58 |
+
raise gr.Error(error_msg)
|
59 |
+
|
60 |
+
def test_preview_chatbot(message, history):
|
61 |
+
response = predict_beta(message, history, SYSTEM_PROMPT)
|
62 |
+
text_start = response.rfind("<|assistant|>", ) + len("<|assistant|>")
|
63 |
+
response = response[text_start:]
|
64 |
+
return response
|
65 |
+
|
66 |
+
|
67 |
+
welcome_preview_message = f"""
|
68 |
+
Welcome to **{TITLE}**! Say something like:
|
69 |
+
|
70 |
+
"{EXAMPLE_INPUT}"
|
71 |
+
"""
|
72 |
+
|
73 |
+
chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
|
74 |
+
textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)
|
75 |
+
|
76 |
+
demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview)
|
77 |
+
|
78 |
+
demo.launch()
|