fixes
Browse files
chains/learning_objectives_generator/learning_objectives_chain.py
CHANGED
|
@@ -6,76 +6,7 @@ from langchain_core.prompts.chat import ChatPromptTemplate
|
|
| 6 |
|
| 7 |
class LearningObjectivesChain(BaseModel):
|
| 8 |
"""
|
| 9 |
-
|
| 10 |
"""
|
| 11 |
|
| 12 |
-
# Templates
|
| 13 |
-
template_generator: ChatPromptTemplate
|
| 14 |
-
template_eliminator: ChatPromptTemplate
|
| 15 |
-
template_finetuner: ChatPromptTemplate
|
| 16 |
-
template_presenter: ChatPromptTemplate
|
| 17 |
-
|
| 18 |
-
# LLM references
|
| 19 |
-
llm_main: Any # The "Main LLM"
|
| 20 |
-
llm_alt: Any # The "Other LLM" used only for the second generator prompt
|
| 21 |
-
|
| 22 |
-
async def run(self, standardized_studytext: str) -> str:
|
| 23 |
-
"""
|
| 24 |
-
Main pipeline for a single run. The 'standardized_studytext' is assumed
|
| 25 |
-
to be already standardized outside of this chain, so we jump straight to generation.
|
| 26 |
-
"""
|
| 27 |
-
|
| 28 |
-
# 1) Two parallel calls to learning_objective_generator
|
| 29 |
-
# with different LLMs (llm_main vs. llm_alt).
|
| 30 |
-
|
| 31 |
-
async def run_generator(llm, llm_label) -> str:
|
| 32 |
-
# Format the generator prompt
|
| 33 |
-
prompt = await self.template_generator.aformat_prompt(
|
| 34 |
-
standardized_studytext=standardized_studytext, # possibly other variables
|
| 35 |
-
llm_label=llm_label
|
| 36 |
-
)
|
| 37 |
-
messages = prompt.to_messages()
|
| 38 |
-
response = await llm.ainvoke(messages)
|
| 39 |
-
return getattr(response, "content", response)
|
| 40 |
-
|
| 41 |
-
# Launch in parallel
|
| 42 |
-
gen_main_task = asyncio.create_task(run_generator(self.llm_main, "MAIN"))
|
| 43 |
-
gen_alt_task = asyncio.create_task(run_generator(self.llm_alt, "ALT"))
|
| 44 |
-
|
| 45 |
-
# Wait for both to finish
|
| 46 |
-
gen_main_result, gen_alt_result = await asyncio.gather(gen_main_task, gen_alt_task)
|
| 47 |
-
|
| 48 |
-
# Combine them
|
| 49 |
-
combined_generators = f"[GEN MAIN]\n{gen_main_result}\n\n[GEN ALT]\n{gen_alt_result}"
|
| 50 |
-
|
| 51 |
-
# 2) learning_objective_eliminator (llm_main)
|
| 52 |
-
prompt_eliminate = await self.template_eliminator.aformat_prompt(
|
| 53 |
-
combined_generators=combined_generators,
|
| 54 |
-
standardized_studytext=standardized_studytext
|
| 55 |
-
)
|
| 56 |
-
elim_messages = prompt_eliminate.to_messages()
|
| 57 |
-
elim_response = await self.llm_main.ainvoke(elim_messages)
|
| 58 |
-
elim_output = getattr(elim_response, "content", elim_response)
|
| 59 |
-
|
| 60 |
-
# 3) learning_objective_finetuner (llm_main)
|
| 61 |
-
prompt_fine = await self.template_finetuner.aformat_prompt(
|
| 62 |
-
elimination_output=elim_output,
|
| 63 |
-
standardized_studytext=standardized_studytext
|
| 64 |
-
)
|
| 65 |
-
fine_messages = prompt_fine.to_messages()
|
| 66 |
-
fine_response = await self.llm_main.ainvoke(fine_messages)
|
| 67 |
-
fine_output = getattr(fine_response, "content", fine_response)
|
| 68 |
-
|
| 69 |
-
# 4) learning_objective_presenter (llm_main)
|
| 70 |
-
prompt_present = await self.template_presenter.aformat_prompt(
|
| 71 |
-
finetuned_output=fine_output,
|
| 72 |
-
standardized_studytext=standardized_studytext
|
| 73 |
-
)
|
| 74 |
-
present_messages = prompt_present.to_messages()
|
| 75 |
-
present_response = await self.llm_main.ainvoke(present_messages)
|
| 76 |
-
final_output = getattr(present_response, "content", present_response)
|
| 77 |
-
|
| 78 |
-
return final_output
|
| 79 |
-
|
| 80 |
class Config:
|
| 81 |
arbitrary_types_allowed = True
|
|
|
|
| 6 |
|
| 7 |
class LearningObjectivesChain(BaseModel):
|
| 8 |
"""
|
|
|
|
| 9 |
"""
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
class Config:
|
| 12 |
arbitrary_types_allowed = True
|
chains/learning_objectives_generator/runner.py
CHANGED
|
@@ -34,6 +34,8 @@ async def run_learning_objectives_generator(
|
|
| 34 |
llm_a = llms.get(model_choice_1, config["default_llm_a"])
|
| 35 |
llm_b = llms.get(model_choice_2, config["default_llm_b"])
|
| 36 |
|
|
|
|
|
|
|
| 37 |
# We will store the final sanitized results in an array of 4 strings
|
| 38 |
# (2 prompts × 2 LLMs)
|
| 39 |
partial_results = ["", "", "", ""]
|
|
@@ -50,7 +52,7 @@ async def run_learning_objectives_generator(
|
|
| 50 |
|
| 51 |
# Step: sanitize
|
| 52 |
sanitize_msg = await sanitize_prompt.aformat_prompt(raw_output=generation_output)
|
| 53 |
-
sanitize_resp = await
|
| 54 |
sanitized_output = getattr(sanitize_resp, "content", sanitize_resp)
|
| 55 |
|
| 56 |
return (track_index, sanitized_output)
|
|
|
|
| 34 |
llm_a = llms.get(model_choice_1, config["default_llm_a"])
|
| 35 |
llm_b = llms.get(model_choice_2, config["default_llm_b"])
|
| 36 |
|
| 37 |
+
llm_sanitize=llms.get(config["llm_sanitize"])
|
| 38 |
+
|
| 39 |
# We will store the final sanitized results in an array of 4 strings
|
| 40 |
# (2 prompts × 2 LLMs)
|
| 41 |
partial_results = ["", "", "", ""]
|
|
|
|
| 52 |
|
| 53 |
# Step: sanitize
|
| 54 |
sanitize_msg = await sanitize_prompt.aformat_prompt(raw_output=generation_output)
|
| 55 |
+
sanitize_resp = await llm_sanitize.ainvoke(sanitize_msg.to_messages()) # or use a separate LLM for sanitization
|
| 56 |
sanitized_output = getattr(sanitize_resp, "content", sanitize_resp)
|
| 57 |
|
| 58 |
return (track_index, sanitized_output)
|
config/chain_configs.py
CHANGED
|
@@ -55,7 +55,11 @@ chain_configs = {
|
|
| 55 |
"template_gen_prompt_a": template_gen_prompt_a,
|
| 56 |
"template_gen_prompt_b": template_gen_prompt_b,
|
| 57 |
"default_llm_a": llms["o1"],
|
| 58 |
-
"default_llm_b": llms["o3-mini (high reasoning_effort)"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
},
|
| 60 |
}
|
| 61 |
|
|
|
|
| 55 |
"template_gen_prompt_a": template_gen_prompt_a,
|
| 56 |
"template_gen_prompt_b": template_gen_prompt_b,
|
| 57 |
"default_llm_a": llms["o1"],
|
| 58 |
+
"default_llm_b": llms["o3-mini (high reasoning_effort)"],
|
| 59 |
+
"template_sanitize": template_sanitize_learning_objectives,
|
| 60 |
+
"llm_sanitize": llms["GPT-4o-mini (zero temp)"],
|
| 61 |
+
|
| 62 |
+
|
| 63 |
},
|
| 64 |
}
|
| 65 |
|
config/templates.py
CHANGED
|
@@ -368,3 +368,13 @@ The latter objective does not specify a single fact but combines two (can be pai
|
|
| 368 |
],
|
| 369 |
input_variables=["standardized_text"]
|
| 370 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
],
|
| 369 |
input_variables=["standardized_text"]
|
| 370 |
)
|
| 371 |
+
|
| 372 |
+
template_sanitize_learning_objectives = ChatPromptTemplate(
|
| 373 |
+
messages=[
|
| 374 |
+
("system", "You are given an output of a brainstorming session that lead to the generation of learning objectives. Your task is to "
|
| 375 |
+
"turn distill this into a numbered list of just the learning objectives."),
|
| 376 |
+
("human", "Here is the output:\n "
|
| 377 |
+
"{raw_output}")
|
| 378 |
+
],
|
| 379 |
+
input_variables=["raw_output"]
|
| 380 |
+
)
|